1
|
Ryser FS, Yalamanoglu A, Valaperti A, Brühlmann C, Mauthe T, Traidl S, Soyka MB, Steiner UC. Dupilumab-induced eosinophilia in patients with diffuse type 2 chronic rhinosinusitis. Allergy 2023; 78:2712-2723. [PMID: 37548395 DOI: 10.1111/all.15844] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Dupilumab, a monoclonal anti-IL-4Rα antibody, is approved for several type 2 mediated inflammatory diseases like asthma, atopic dermatitis, and diffuse type 2 chronic rhinosinusitis (CRS). Clinical studies had reported a transient increase in blood eosinophils during dupilumab therapy. This study aimed to assess the impact of elevated blood eosinophils on clinical outcome and to investigate the cause of high blood eosinophil levels under dupilumab therapy. METHODS Patients suffering from diffuse type 2 CRS treated with dupilumab were examined on days 0, 28, 90, and 180 after therapy start. Sino-Nasal-Outcome-Test Score (SNOT-22), Total Nasal Polyp Score (TNPS), and blood samples were collected. Cytokine measurements and proteomics analysis were conducted. Flow cytometry analysis measured receptor expression on eosinophils. RESULTS Sixty-eighty patients were included. Baseline eosinophilia ≥0.3G/L was observed in 63.2% of patients, and in 30.9% of patients, eosinophils increased by ≥0.5G/L under dupilumab. Subjects with eosinophilia ≥0.3G/L at baseline had the best SNOT-22 mean change compared to no eosinophilia. Eosinophil elevation during dupilumab therapy had no impact on clinical scores. The eosinophil adhesion molecule VCAM-1 decreased significantly during therapy in all patients. The chemokine receptor CXCR4 was significantly down- and IL-4 upregulated in subjects with eosinophil increase. CONCLUSION Our findings suggest that increased eosinophils in type 2 CRS are associated with a good clinical response to dupilumab. Patients with elevated IL-4 at baseline developed dupilumab-induced transient eosinophilia. We identified the downregulation of VCAM-1 and surface markers CD49d and CXCR4 on eosinophils as possible explanations of dupilumab-induced eosinophilia.
Collapse
Affiliation(s)
- Fabio S Ryser
- Department of Rheumatology and Immunology, University Hospital Bern, University of Bern, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Ayla Yalamanoglu
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alan Valaperti
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Catrin Brühlmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tina Mauthe
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephan Traidl
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Swiss Institute for Asthma and Allergy Research, Davos, Switzerland
| | - Michael B Soyka
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Urs C Steiner
- Department of Rheumatology and Immunology, University Hospital Bern, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Macchia I, La Sorsa V, Urbani F, Moretti S, Antonucci C, Afferni C, Schiavoni G. Eosinophils as potential biomarkers in respiratory viral infections. Front Immunol 2023; 14:1170035. [PMID: 37483591 PMCID: PMC10358847 DOI: 10.3389/fimmu.2023.1170035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Eosinophils are bone marrow-derived granulocytes that, under homeostatic conditions, account for as much as 1-3% of peripheral blood leukocytes. During inflammation, eosinophils can rapidly expand and infiltrate inflamed tissues, guided by cytokines and alarmins (such as IL-33), adhesion molecules and chemokines. Eosinophils play a prominent role in allergic asthma and parasitic infections. Nonetheless, they participate in the immune response against respiratory viruses such as respiratory syncytial virus and influenza. Notably, respiratory viruses are associated with asthma exacerbation. Eosinophils release several molecules endowed with antiviral activity, including cationic proteins, RNases and reactive oxygen and nitrogen species. On the other hand, eosinophils release several cytokines involved in homeostasis maintenance and Th2-related inflammation. In the context of SARS-CoV-2 infection, emerging evidence indicates that eosinophils can represent possible blood-based biomarkers for diagnosis, prognosis, and severity prediction of disease. In particular, eosinopenia seems to be an indicator of severity among patients with COVID-19, whereas an increased eosinophil count is associated with a better prognosis, including a lower incidence of complications and mortality. In the present review, we provide an overview of the role and plasticity of eosinophils focusing on various respiratory viral infections and in the context of viral and allergic disease comorbidities. We will discuss the potential utility of eosinophils as prognostic/predictive immune biomarkers in emerging respiratory viral diseases, particularly COVID-19. Finally, we will revisit some of the relevant methods and tools that have contributed to the advances in the dissection of various eosinophil subsets in different pathological settings for future biomarker definition.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
3
|
Hernandez JD, Tew BY, Li T, Gooden GC, Ghannam H, Masuda M, Madura J, Salhia B, Jacobsen EA, De Filippis E. A FACS-based approach to obtain viable eosinophils from human adipose tissue. Sci Rep 2020; 10:13210. [PMID: 32764552 PMCID: PMC7413382 DOI: 10.1038/s41598-020-70093-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Eosinophils have been widely investigated in asthma and allergic diseases. More recently, new insights into the biology of these cells has illustrated eosinophils contribute to homeostatic functions in health such as regulation of adipose tissue glucose metabolism. Human translational studies are limited by the difficulty of obtaining cells taken directly from their tissue environment, relying instead on eosinophils isolated from peripheral blood. Isolation techniques for tissue-derived eosinophils can result in unwanted cell or ribonuclease activation, leading to poor cell viability or RNA quality, which may impair analysis of effector activities of these cells. Here we demonstrate a technique to obtain eosinophils from human adipose tissue samples for the purpose of downstream molecular analysis. From as little as 2 g of intact human adipose tissue, greater than 104 eosinophils were purified by fluorescence-activated cell sorting (FACS) protocol resulting in ≥ 99% purity and ≥ 95% viable eosinophils. We demonstrated that the isolated eosinophils could undergo epigenetic analysis to determine differences in DNA methylation in various settings. Here we focused on comparing eosinophils isolated from human peripheral blood vs human adipose tissue. Our results open the door to future mechanistic investigations to better understand the role of tissue resident eosinophils in different context.
Collapse
Affiliation(s)
- James D Hernandez
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ting Li
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Gerald C Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hamza Ghannam
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Mia Masuda
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - James Madura
- Division of General Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Eleanna De Filippis
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
4
|
Cao Y, Shin S, Carroll DJ, O'Sullivan JA, Bochner BS. Single-site, five-year experience with human eosinophil isolation by density gradient centrifugation and CD16 immunomagnetic negative separation. BMC Res Notes 2020; 13:211. [PMID: 32276656 PMCID: PMC7149875 DOI: 10.1186/s13104-020-05055-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Little has been reported regarding the reliability of methods for the purification of human blood eosinophils. We retrospectively reviewed our experience with 350 consecutive eosinophil isolations. RESULTS Between January 2014 and December 2018, we conducted 350 eosinophil purifications from 83 donors. Absolute eosinophil count (AEC), calculated from hospital complete blood counts when available (n = 289), ranged from 32 to 1352 eosinophils/µL ([Formula: see text]: 179 ± 136/µL). Eosinophil yields ranged from 0.4 to 24.4 million cells per 20 mL of blood drawn ([Formula: see text]: 3.1 ± 1.9 million eosinophils) with > 98% purity. Comparing AEC to actual yield, recovery was 87% ± 29% ([Formula: see text]) and AEC strongly correlated with yield. To explore the reproducibility of yield, a subsequent analysis was limited to those donors drawn ≥ 3 times (N = 35), and there was no difference in the average coefficient of variation for yield between allergic and non-allergic donors. Viability of isolated eosinophils was consistently > 95% and after 24 h of culture did not differ between allergic and non-allergic donors. We conclude that this immunomagnetic separation method for human eosinophil isolation from whole blood is a reliable, reproducible technique for obtaining an average of 87% yield with high purity and viability.
Collapse
Affiliation(s)
- Yun Cao
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sooncheon Shin
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Daniela J Carroll
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jeremy A O'Sullivan
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 E. Huron St., Room M-306, Chicago, IL, 60611, USA.
| |
Collapse
|