Peters DC, Markovic S, Bao Q, Preise D, Sasson K, Agemy L, Scherz A, Frydman L. Improving deuterium metabolic imaging (DMI) signal-to-noise ratio by spectroscopic multi-echo bSSFP: A pancreatic cancer investigation.
Magn Reson Med 2021;
86:2604-2617. [PMID:
34196041 DOI:
10.1002/mrm.28906]
[Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE
Deuterium metabolic imaging (DMI) maps the uptake of deuterated precursors and their conversion into lactate and other markers of tumor metabolism. Even after leveraging 2 H's short T1 s, DMI's signal-to-noise ratio (SNR) is limited. We hypothesize that a multi-echo balanced steady-state free precession (ME-bSSFP) approach would increase SNR compared to chemical shift imaging (CSI), while achieving spectral isolation of the metabolic precursors and products.
METHODS
Suitably tuned 2 H ME-bSSFP (five echo times [TEs], ΔTE = 2.2 ms, repetition time [TR]/flip-angle = 12 ms/60°) was implemented at 15.2T and compared to CSI (TR/flip-angle = 95 ms/90°) regarding SNR and spectral isolation, in simulations, in deuterated phantoms and for the in vivo diagnosis of a mouse tumor model of pancreatic adenocarcinoma (N = 10).
RESULTS
Simulations predicted an SNR increase vs. CSI of 3-5, and that the peaks of 2 H-water, 2 H6,6' -glucose, and 2 H3,3' -lactate can be well isolated by ME-bSSFP; phantoms confirmed this. In vivo, at equal spatial resolution (1.25 × 1.25 mm2 ) and scan time (10 min), 2 H6,6' -glucose's and 2 H3,3' -lactate's SNR were indeed higher for bSSFP than for CSI, three-fold for glucose (57 ± 30 vs. 19 ± 11, P < .001), doubled for water (13 ± 5 vs. 7 ± 3, P = .005). The time courses and overall localization of all metabolites agreed well, comparing CSI against ME-bSSFP. However, a clearer localization of glucose in kidneys and bladder, the detection of glucose-avid rims in certain tumors, and a heterogeneous pattern of intra-tumor lactate production could only be observed using ME-bSSFP's higher resolution.
CONCLUSIONS
ME-bSSFP provides greater SNR per unit time than CSI, providing for higher spatial resolution mapping of glucose uptake and lactate production in tumors.
Collapse