1
|
Chen J, Ouyang X, Yu C, Xiang J. Functionalized pNIPAM-DNA Hydrogel Colorimetric Platform for Visual Detection of Low-Mass Soluble β-Amyloid Oligomers. Anal Chem 2025. [PMID: 40334134 DOI: 10.1021/acs.analchem.5c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Low-mass soluble β-amyloid oligomers (LSAβO) are critical Alzheimer's disease (AD) biomarkers with significant diagnostic and therapeutic potential. However, their application in early screening and detection is limited by the reliance on complex analytical instruments and procedures. To address this, we developed a visual sensing platform for LSAβO detection using a functionalized pNIPAM-DNA hydrogel. Exploiting the temperature-responsive nature of pNIPAM, the hydrogel selectively incorporates and enriches LSAβO from solution via temperature-induced expansion and contraction. LSAβO binding to aptamers on the hydrogel triggers the formation of G-quadruplex DNAzymes, which catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine to generate a visible colorimetric signal. The hydrogel's small pore size further enhances selectivity by excluding larger oligomers during real sample analysis. This sensor exhibits a linear detection range of 0.1-7.5 nM for LSAβO and a detection limit of 50 pM. Combining LSAβO enrichment and size exclusion, this functionalized pNIPAM-DNA hydrogel platform provides a cost-effective, highly sensitive, selective, and high-throughput approach for preliminary LSAβO screening and detection.
Collapse
Affiliation(s)
- Jia Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xuliang Ouyang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chenxiao Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
2
|
Liu J, Zhao H, Hu S, Li N, Cui M, Han B, Li M, Zhang C. Covalent organic framework-based ratiometric electrochemical sensing platform for ultrasensitive determination of amyloid-β 42 oligomer. Talanta 2024; 280:126699. [PMID: 39142131 DOI: 10.1016/j.talanta.2024.126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Accurate and sensitive detection of amyloid-β 42 oligomer (Aβ42O) is of great significance for early diagnosis of Alzheimer's disease (AD). Herein, a signal on-off ratiometric electrochemical immunosensor was developed for highly selective and quantitative determination of Aβ42O by using novel covalent organic frameworks (COFs) composites as the sensing platform. This immunosensor produced two independent electrochemical signals from the [Fe(CN)6]3-/4- and methylene blue (MB) probes at different potentials based on the electrocatalytic activity of gold nanoparticle-functionalized porphyrinyl COFs nanocomposites toward [Fe(CN)6]3-/4- and the signal probe of MB encapsulated in the aptamer-modified alkynyl COFs. Because the two signals of [Fe(CN)6]3-/4- and MB changed in opposite directions, a signal on-off mode was generated which can correct the results by introducing a reference signal and effectively eliminate background interference. Under optimal experimental conditions, the current ratio (IMB/I[Fe(CN)6]3-/4-) was well linearly related to the logarithmic value of Aβ42O concentrations in the range of 10 pM to 1 μM, and the detection limit was 5.1 pM (S/N = 3). Additionally, the immunosensor exhibited satisfactory performance in case of real cerebrospinal fluid samples. The designed ratiometric electrochemical immunosensor provides a valuable route for early diagnosis of AD and our results also pave the way for designing of sensing platforms using COF-based nanomaterials and extending their functions and applications to bioanalysis.
Collapse
Affiliation(s)
- Jingjie Liu
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Haiyan Zhao
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Shuyang Hu
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China; Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Na Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Min Cui
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Bingkai Han
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, 300381, China
| | - Meng Li
- Key Laboratory of Innovative Drug Development and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Cong Zhang
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
3
|
Chen L, Yang G, Qu F. Aptamer-based sensors for fluid biopsies of protein disease markers. Talanta 2024; 276:126246. [PMID: 38796994 DOI: 10.1016/j.talanta.2024.126246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Fluid biopsy technology, characterized by its minimally invasive nature, speed, and continuity, has become a rapidly advancing and widely applied real-time diagnostic technique. Among various biomarkers, proteins represent the most abundant class of disease indicators. The sensitive and accurate detection of protein markers in bodily fluids is significantly influenced by the control exerted by recognition ligands. Aptamers, which are structurally dynamic functional oligonucleotides, exhibit high affinity, specific recognition of targets, and notable characteristics of high editability and modularity. These features make aptamer universal "recognition-capture" components, contribute to a significant leap in their applications within the biosensor domain. In this context, we provide a comprehensive review of the extensive application of aptamer-based biosensors in fluid biopsy. We systematically compile the characteristics and construction strategies of aptamer-based biosensors tailored for fluid biopsy, including aptamer sequences, affinity (KD), fluid background, sensing technologies, sensor construction strategies, incubation time, detection performance, and influencing factors. Furthermore, a comparative analysis of their advantages and disadvantages was conducted. In conclusion, we delineate and deliberate on prospective research trajectories and challenges that lie ahead in the realm of aptamer-based biosensors for fluid biopsy.
Collapse
Affiliation(s)
- Li Chen
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Feng Qu
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
4
|
Rashid MH, Sen P. Recent Advancements in Biosensors for the Detection and Characterization of Amyloids: A Review. Protein J 2024; 43:656-674. [PMID: 38824466 DOI: 10.1007/s10930-024-10205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Modern medicine has increased the human lifespan. However, with an increase in average lifespan risk of amyloidosis increases. Amyloidosis is a condition characterized by protein misfolding and aggregation. Early detection of amyloidosis is crucial, yet conventional diagnostic methods are costly and lack precision, necessitating innovative tools. This review explores recent advancements in diverse amyloid detection methodologies, highlighting the need for interdisciplinary research to develop a miniaturized electrochemical biosensor leveraging nanotechnology. However, the diagnostics industry faces obstacles such as skilled labor shortages, standardized selection processes, and concurrent multi-analyte identification challenges. Research efforts are focused on integrating electrochemical techniques into clinical applications and diagnostics, with the successful transition of miniaturized technologies from development to testing posing a significant hurdle. Label-free transduction techniques like voltammetry and electrochemical impedance spectroscopy (EIS) have gained traction due to their rapid, cost-effective, and user-friendly nature.
Collapse
Affiliation(s)
- Md Harun Rashid
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Priyankar Sen
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Gordón Pidal JM, Moreno-Guzmán M, Montero-Calle A, Valverde A, Pingarrón JM, Campuzano S, Calero M, Barderas R, López MÁ, Escarpa A. Micromotor-based electrochemical immunoassays for reliable determination of amyloid-β (1-42) in Alzheimer's diagnosed clinical samples. Biosens Bioelectron 2024; 249:115988. [PMID: 38194814 DOI: 10.1016/j.bios.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Alzheimer's disease (AD), in addition to being the most common cause of dementia, is very difficult to diagnose, with the 42-amino acid form of Aβ (Aβ-42) being one of the main biomarkers used for this purpose. Despite the enormous efforts made in recent years, the technologies available to determine Aβ-42 in human samples require sophisticated instrumentation, present high complexity, are sample and time-consuming, and are costly, highlighting the urgent need not only to develop new tools to overcome these limitations but to provide an early detection and treatment window for AD, which is a top-challenge. In recent years, micromotor (MM) technology has proven to add a new dimension to clinical biosensing, enabling ultrasensitive detections in short times and microscale environments. To this end, here an electrochemical immunoassay based on polypyrrole (PPy)/nickel (Ni)/platinum nanoparticles (PtNPs) MM is proposed in a pioneering manner for the determination of Aβ-42 in left prefrontal cortex brain tissue, cerebrospinal fluid, and plasma samples from patients with AD. MM combines the high binding capacity of their immunorecognition external layer with self-propulsion through the catalytic generation of oxygen bubbles in the internal layer due to decomposition of hydrogen peroxide as fuel, allowing rapid bio-detection (15 min) of Aβ-42 with excellent selectivity and sensitivity (LOD = 0.06 ng/mL). The application of this disruptive technology to the analysis of just 25 μL of the three types of clinical samples provides values concordant with the clinical values reported, thus confirming the potential of the MM approach to assist in the reliable, simple, fast, and affordable diagnosis of AD by determining Aβ-42.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain
| | - María Moreno-Guzmán
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
| | - Alejandro Valverde
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain.
| | - Miguel Calero
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain.
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain; Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain; Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| |
Collapse
|
6
|
Zarepour A, Karasu Ç, Mir Y, Nematollahi MH, Iravani S, Zarrabi A. Graphene- and MXene-based materials for neuroscience: diagnostic and therapeutic applications. Biomater Sci 2023; 11:6687-6710. [PMID: 37646462 DOI: 10.1039/d3bm01114c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
MXenes and graphene are two-dimensional materials that have gained increasing attention in neuroscience, particularly in sensing, theranostics, and biomedical engineering. Various composites of graphene and MXenes with fascinating thermal, optical, magnetic, mechanical, and electrical properties have been introduced to develop advanced nanosystems for diagnostic and therapeutic applications, as exemplified in the case of biosensors for neurotransmitter detection. These biosensors display high sensitivity, selectivity, and stability, making them promising tools for neuroscience research. MXenes have been employed to create high-resolution neural interfaces for neuroelectronic devices, develop neuro-receptor-mediated synapse devices, and stimulate the electrophysiological maturation of neural circuits. On the other hand, graphene/derivatives exhibit therapeutic applicability in neuroscience, as exemplified in the case of graphene oxide for targeted delivery of therapeutic agents to the brain. While MXenes and graphene have potential benefits in neuroscience, there are also challenges/limitations associated with their use, such as toxicity, environmental impacts, and limited understanding of their properties. In addition, large-scale production and commercialization as well as optimization of reaction/synthesis conditions and clinical translation studies are very important aspects. Thus, it is important to consider the use of these materials in neuroscience research and conduct further research to obtain an in-depth understanding of their properties and potential applications. By addressing issues related to biocompatibility, long-term stability, targeted delivery, electrical interfaces, scalability, and cost-effectiveness, MXenes and graphene have the potential to greatly advance the field of neuroscience and pave the way for innovative diagnostic and therapeutic approaches for neurological disorders. Herein, recent advances in therapeutic and diagnostic applications of graphene- and MXene-based materials in neuroscience are discussed, focusing on important challenges and future prospects.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06500 Ankara, Turkey
| | - Yousof Mir
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| |
Collapse
|
7
|
Al Abdullah S, Najm L, Ladouceur L, Ebrahimi F, Shakeri A, Al-Jabouri N, Didar TF, Dellinger K. Functional Nanomaterials for the Diagnosis of Alzheimer's Disease: Recent Progress and Future Perspectives. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302673. [PMID: 39309539 PMCID: PMC11415277 DOI: 10.1002/adfm.202302673] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 09/25/2024]
Abstract
Alzheimer's disease (AD) is one of the main causes of dementia worldwide, whereby neuronal death or malfunction leads to cognitive impairment in the elderly population. AD is highly prevalent, with increased projections over the next few decades. Yet current diagnostic methods for AD occur only after the presentation of clinical symptoms. Evidence in the literature points to potential mechanisms of AD induction beginning before clinical symptoms start to present, such as the formation of amyloid beta (Aβ) extracellular plaques and neurofibrillary tangles (NFTs). Biomarkers of AD, including Aβ 40, Aβ 42, and tau protein, amongst others, show promise for early AD diagnosis. Additional progress is made in the application of biosensing modalities to measure and detect significant changes in these AD biomarkers within patient samples, such as cerebral spinal fluid (CSF) and blood, serum, or plasma. Herein, a comprehensive review of the emerging nano-biomaterial approaches to develop biosensors for AD biomarkers' detection is provided. Advances, challenges, and potential of electrochemical, optical, and colorimetric biosensors, focusing on nanoparticle-based (metallic, magnetic, quantum dots) and nanostructure-based biomaterials are discussed. Finally, the criteria for incorporating these emerging nano-biomaterials in clinical settings are presented and assessed, as they hold great potential for enhancing early-onset AD diagnostics.
Collapse
Affiliation(s)
- Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Lubna Najm
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Nadine Al-Jabouri
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- Institute for Infectious Disease Research (IIDR), 1280 Main St W, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| |
Collapse
|
8
|
Lakshmipriya T, Gopinath SCB. Analyzing a multifunctional protein clustering for high-performance Alzheimer diagnosis. BRAIN & SPINE 2023; 4:102867. [PMID: 39823070 PMCID: PMC11736062 DOI: 10.1016/j.bas.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 01/19/2025]
Affiliation(s)
- Thangavel Lakshmipriya
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Subash C B Gopinath
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602 105, Tamil Nadu, India
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Center of Excellence for Micro System Technology (MiCTEC), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia
| |
Collapse
|
9
|
Hsiao WWW, Angela S, Le TN, Ku CC, Hu PS, Chiang WH. Evolution of Detecting Early Onset of Alzheimer's Disease: From Neuroimaging to Optical Immunoassays. J Alzheimers Dis 2023; 93:821-845. [PMID: 37125550 DOI: 10.3233/jad-221202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) is a pathological disorder defined by the symptoms of memory loss and deterioration of cognitive abilities over time. Although the etiology is complex, it is mainly associated with the accumulation of toxic amyloid-β peptide (Aβ) aggregates and tau protein-induced neurofibrillary tangles (NFTs). Even now, creating non-invasive, sensitive, specific, and cost-effective diagnostic methods for AD remains challenging. Over the past few decades, polymers, and nanomaterials (e.g., nanodiamonds, nanogold, quantum dots) have become attractive and practical tools in nanomedicine for diagnosis and treatment. This review focuses on current developments in sensing methods such as enzyme-linked immunosorbent assay (ELISA) and surface-enhanced Raman scattering (SERS) to boost the sensitivity in detecting related biomarkers for AD. In addition, optical analysis platforms such as ELISA and SERS have found increasing popularity among researchers due to their excellent sensitivity and specificity, which may go as low as the femtomolar range. While ELISA offers easy technological usage and high throughput, SERS has the advantages of improved mobility, simple electrical equipment integration, and lower cost. Both portable optical sensing techniques are highly superior in terms of sensitivity, specificity, human application, and practicality, enabling the early identification of AD biomarkers.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Chia-Chi Ku
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan, R.O.C
| | - Po-Sheng Hu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City, Taiwan, R.O.C
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| |
Collapse
|
10
|
Pan G, Ji J, Li S, Wu A. Gold nanourchin enhances detection of Alzheimer's disease biomarker "miRNA-137" on dual electrode sensing surface. Biotechnol Appl Biochem 2022; 69:2573-2579. [PMID: 35188689 DOI: 10.1002/bab.2306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
Diagnosis of Alzheimer's disease (AD) is a complex task, and at present, neuroimaging such as magnetic resonance imaging and positron emission tomography is commonly used for the diagnosis of AD. This research work developed a new biosensing method with gold nanomaterial to identify AD biomarker of miRNA-137. Gold nanourchin (GNU) was attached on the interdigitated electrode through the silane linker and COOH-ended capture oligonucleotide was immobilized on the GNU surface. This surface helps to quantify the target sequence of miRNA-137 and the detection limit reached to 0.01 pM on the linear range of 0.01-100 pM. With 3δ calculation on the linearity, the determination coefficient was noticed as y = 1.2867x - 2.2697; R2 = 0.9059. The control performances did not show a significant response, indicating the specific identification of target.
Collapse
Affiliation(s)
- Gaofeng Pan
- Department of Neurology, Fifth People's Hospital of Chengdu, Chengdu, China
| | - Jinming Ji
- Department of Neurology, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Shanshan Li
- Department of Neurology, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Aimei Wu
- Department of Neurology, Xi'an Fengcheng Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Sandwich biosensing on a nanodiamond-modified interdigitated electrode for monitoring the occurrence of osteosarcoma. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Miao YB, Zhong Q, Ren HX. Engineering a thermostable biosensor based on biomimetic mineralization HRP@Fe-MOF for Alzheimer's disease. Anal Bioanal Chem 2022; 414:8331-8339. [PMID: 36258085 DOI: 10.1007/s00216-022-04367-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/27/2022]
Abstract
The development of disease detection by biosensors represents one of the key components of medical science. However, millions of people are still misdiagnosed each year due to the poor efficacy and thermal instability of biosensors. Using horseradish peroxidase (HRP) as a paradigm, we offer a rational design strategy to optimize the thermostability and activity of biosensors by biomimetic mineralization. To overcome the weak thermostability of the biosensor, the mineralization of Fe-MOF forms an armor on HRP that protects against high temperature. Additionally, the biomimetic mineralization HRP@Fe-MOF can double-catalyze the TMB/H2O2 chromogenic system for color development. The biosensor can also be recycled through simple heat treatment due to the thermally stable aptamer and biomimetic mineralization HRP@Fe-MOF. The optical biosensor based on this sensitive spectral transformation was successfully developed for the measurement of AβO with an outstanding linear range (0.0001-10 nM) and a low limit of detection (LOD) of 0.03 pM. This promising platform will open up new avenues for the detection of AβO in the early diagnosis of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | | | - Hong-Xia Ren
- School of Chemistry and Chemical Engineering, Zunyi Normal College, Guizhou, 563000, China.
| |
Collapse
|
13
|
Design strategies, current applications and future perspective of aptasensors for neurological disease biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
A field-deployable diagnostic assay for the visual detection of misfolded prions. Sci Rep 2022; 12:12246. [PMID: 35851406 PMCID: PMC9293997 DOI: 10.1038/s41598-022-16323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Diagnostic tools for the detection of protein-misfolding diseases (i.e., proteopathies) are limited. Gold nanoparticles (AuNPs) facilitate sensitive diagnostic techniques via visual color change for the identification of a variety of targets. In parallel, recently developed quaking-induced conversion (QuIC) assays leverage protein-amplification and fluorescent signaling for the accurate detection of misfolded proteins. Here, we combine AuNP and QuIC technologies for the visual detection of amplified misfolded prion proteins from tissues of wild white-tailed deer infected with chronic wasting disease (CWD), a prion disease of cervids. Our newly developed assay, MN-QuIC, enables both naked-eye and light-absorbance measurements for detection of misfolded prions. MN-QuIC leverages basic laboratory equipment that is cost-effective and portable, thus facilitating real-time prion diagnostics across a variety of settings. In addition to laboratory-based tests, we deployed to a rural field-station in southeastern Minnesota and tested for CWD on site. We successfully demonstrated that MN-QuIC is functional in a non-traditional laboratory setting by performing a blinded analysis in the field and correctly identifying all CWD positive and CWD not-detected deer at the field site in 24 h, thus documenting the portability of the assay. White-tailed deer tissues used to validate MN-QuIC included medial retropharyngeal lymph nodes, parotid lymph nodes, and palatine tonsils. Importantly, all of the white-tailed deer (n = 63) were independently tested using ELISA, IHC, and/or RT-QuIC technologies and results secured with MN-QuIC were 95.7% and 100% consistent with these tests for positive and non-detected animals, respectively. We hypothesize that electrostatic forces help govern the AuNP/prion interactions and conclude that MN-QuIC has great potential for sensitive, field-deployable diagnostics for CWD, with future potential diagnostic applications for a variety of proteopathies.
Collapse
|
15
|
Xing J, Zhang Y, Xu S, Zeng X. Nanomaterial assisted diagnosis of dopamine to determine attention deficit hyperactivity disorder - ‘An issue with Chinese children’. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Gopinath SCB, Ismail ZH, Shapiai MI, Sobran NMM. Biosensing human blood clotting factor by dual probes: Evaluation by deep long short-term memory networks in time series forecasting. Biotechnol Appl Biochem 2022; 69:930-938. [PMID: 33835514 DOI: 10.1002/bab.2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 11/06/2022]
Abstract
Artificial intelligence of things (AIoT) has become a potential tool for use in a wide range of fields, and its use is expanding in interdisciplinary sciences. On the other hand, in a clinical scenario, human blood-clotting disease (Royal disease) detection has been considered an urgent issue that has to be solved. This study uses AIoT with deep long short-term memory networks for biosensing application and analyzes the potent clinical target, human blood clotting factor IX, by its aptamer/antibody as the probe on the microscaled fingers and gaps of the interdigitated electrode. The earlier results by the current-volt measurements have shown the changes in the surface modification. The limit of detection (LOD) was noticed as 1 pM with the antibody as the probe, whereas the aptamer behaved better with the LOD at 100 fM. The time-series predictions from the AIoT application supported the obtained results with the laboratory analyses using both probes. This application clearly supports the results obtained from the interdigitated electrode sensor as aptamer to be the better option for analyzing the blood clotting defects. The current study supports a great implementation of AIoT in sensing application and can be followed for other clinical biomarkers.
Collapse
Affiliation(s)
- Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Zool Hilmi Ismail
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Mohd Ibrahim Shapiai
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Nur Maisarah Mohd Sobran
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Zamanian J, Khoshbin Z, Abnous K, Taghdisi SM, Hosseinzadeh H, Danesh NM. Current progress in aptamer-based sensing tools for ultra-low level monitoring of Alzheimer's disease biomarkers. Biosens Bioelectron 2022; 197:113789. [PMID: 34798498 DOI: 10.1016/j.bios.2021.113789] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) as common late-life dementia is pathologically associated with the irreversible and progressive disorder, misfolding, deposition, and accumulation of the brain proteins. Especially, the formation of fibrous amyloid plaques by aggregation of amyloid-β peptides is the pathological cause of this neurologic disorder disease. Besides, tau protein isoforms destabilize the microtubule filaments through post-translational modifications and induce nerve cells' death. Amyloid-β peptides and tau proteins are considered as the critical symptom and reliable molecular biomarkers for the early diagnosis of AD. AD is characterized by impaired thinking proficiencies, cognitive decline, memory loss, and behavioral disability. Since there is no efficacious therapy for AD at present, the development of precise sensing tools for the early diagnosis of this disease is essential and crucial. Aptamer-based biosensors (aptasensors) have acquired utmost importance in the field of AD healthcare, due to excellent sensitivity and specificity, ease-of-use, cost-effectiveness, portability, and rapid assay time. Here, we highlight the recent developments and novel perspectives in the field of aptasensor design to quantitatively monitor the AD biomarkers. Finally, some results are represented to achieve a promising viewpoint for introducing the novel aptasensor test kits in the future.
Collapse
Affiliation(s)
- Javad Zamanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic, Iran
| | - Noor Mohammd Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Passive Defense, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
18
|
Zhang X, Zhang J, Gao Y, Yan J, Song W. Controllable signal molecule release from Au NP-gated MSNs for photocathodic detection of ultralow level AβO. Chem Commun (Camb) 2021; 58:839-842. [PMID: 34931636 DOI: 10.1039/d1cc05220a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
By integrating a target-responsive MSN-based controlled release system with a sensitization-SPR co-enhanced thionine/MoS2 QDs/Cu NWs photocathode, a highly sensitive split-type PEC aptasensing platform for AβO detection in blood is constructed. Ultralow detection limit (2.1 fM) and high selectivity show great potential in early AD diagnosis.
Collapse
Affiliation(s)
- Xuechen Zhang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jinling Zhang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yao Gao
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jianyue Yan
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
19
|
Bi H, Bian P, Gopinath SCB, Marimuthu K, Lv G, Yin X. Identifying mineral decrement with bone injury by quantifying osteocalcin on current-volt sensor. Biotechnol Appl Biochem 2021; 69:2061-2068. [PMID: 34622990 DOI: 10.1002/bab.2267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Osteoporosis, a bone disease is caused by the deterioration of bone and shows an enhanced risk of bone fracture and decreasing bone mineral density. Unfortunately, the available radiological techniques are expensive, and have disadvantages such as radiation intake, need a specialist to handle the instrument, and so forth. This research is focused to develop a point-of-care system to identify osteocalcin on current-volt sensor, which helps to diagnose the bone metabolism and prognostics. Antiosteocalcin antibody was attached on the electrode through the silane-modified iron material. The antibody-immobilized sensing surface was utilized to identify the level of osteocalcin and the detection limit of 100 pg/ml reached on linear concentrations of 0.01-3000 ng/ml. Calculations were made by triplicates (n = 3; 3δ) on the determination coefficient of y = 0.2637x-0.6012; R2 = 0.9319. Further, control proteins failed to bind with immobilized antibody, confirmed by the specific osteocalcin detection. This research is to identify the osteoporosis biomarker and to help determine the conditions with osteoporosis.
Collapse
Affiliation(s)
- Huanjie Bi
- The Second Department of Orthopedics, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Peimin Bian
- Department of Medical Rehabilitation, The 5th People's Hospital of Jinan, Jinan, Shandong, China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Kasi Marimuthu
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Genbing Lv
- Department of Orthopedics, Sun Si Miao Hospital of Beijing University of Chinese Medicine, Tongchuan Traditional Chinese Medicine Hospital, Tongchuan, Shaanxi, China
| | - XinHua Yin
- Department of Spine Surgery, HongHui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Gao M, Sun Y, Wang Q, Ma S, Guo X, Zhou L, Chen Y, Marimuthu K, Gopinath SCB. Nanosensing colon cancer biomarker on zeolite-modified gap-fingered dielectrodes. Biotechnol Appl Biochem 2021; 69:1885-1892. [PMID: 34523748 DOI: 10.1002/bab.2254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 12/31/2022]
Abstract
Nanomaterial on the sensing area elevates the biomolecular immobilization by its right orientation with a proper alignment, and zeolite is one of the suitable materials. In this research, the zeolite nanoparticles were synthesized using rice hush ash as the basic source and the prepared zeolite by the addition of sodium silicate was utilized to attach antibody as a probe on a gap-fingered dielectrode surface to identify the colon cancer biomarker, "colon cancer-secreted protein-2" (CCSP-2). Field Emission Scanning Electron Microscopy and Field Emission Transmission Electron Microscopy images confirmed the size of the nanoparticle to be ∼15 nm and the occurrence of silica and alumina. Zeolite was modified on the electrode surface through the amine linker, and then anti-CCSP-2 was attached by an aldehyde linker. On this surface, CCSP-2 was detected and attained the detection limit to be 3 nM on the linear regression curve with 3-5 nM of CCSP-2. Estimated by the determination coefficient of y = 2.3952x - 4.4869 and R2 = 9041 with 3δ (n = 3). In addition, control proteins did not produce the notable current response representing the specific sensing of CCSP-2. This research is suitable to identify CCSP-2 at a lower level in the bloodstream under the physiological condition of a colon cancer patient.
Collapse
Affiliation(s)
- Ming Gao
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuansong Sun
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi Wang
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuaiting Ma
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinwei Guo
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingling Zhou
- Outpatient operating room, Gaoxin Branch, First the Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kasi Marimuthu
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, 08100, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
21
|
Yin M, Xu D, Yu J, Huang S, Gopinath SCB, Kang P. Impedance spectroscopy for identifying tau protein to monitor anesthesia-based issues. Biotechnol Appl Biochem 2021; 69:1805-1811. [PMID: 34453342 DOI: 10.1002/bab.2246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022]
Abstract
Anesthesia-related drugs cause various side effects and health-related illnesses after surgery. In particular, neurogenerative disorder is a common problem of anesthesia-related drugs. A patient gets anesthesia as a requirement of the preoperative evaluation to diagnose the medical illness, which is caused by anesthetic drug treatment. Different blood-based biomarkers help in identifying the changes appearing in patients after anesthesia treatment. Among them, tau protein is a sensitive biomarker of neurodegenerative diseases, and the fluctuations in tau proteins are highly associated with various diseases. Furthermore, researchers have found unstable levels of tau protein after the anesthesia process. The current research has focused on quantifying tau protein via impedance spectroscopy to identify the problems caused by anesthesia-related drugs. An impedance spectroscopy electrode was modified into a multiwalled carbon nanotube, and an amine-ended aptamer was then attached. This electrode surface was used to quantify the tau protein level and reached the detection limit of 1 fM. The determination coefficient was found to be y = 369.93x + 1144.9, with R2 = 0.9846 in the linear range of 1 fM-1 nM. Furthermore, tau protein spiked human serum was clearly identified on the immobilized aptamer surface, indicating the specific detection.
Collapse
Affiliation(s)
- Miaomiao Yin
- Department of Anesthesiology, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Defang Xu
- Department of Anesthesiology, Tianjin Fourth Center Hospital, Tianjin, China
| | - Jinyong Yu
- Department of Anesthesiology, Zhucheng Maternal and Child Health Hospital, Weifang, Shandong, China
| | - Saisai Huang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Peipei Kang
- Department of Anesthesiology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
22
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
23
|
Sun H, Bao X, Yao X, Gopinath SCB, Min Y. Aptasensing luteinizing hormone to determine gynecological endocrine complications on graphene oxide layered sensor. Biotechnol Appl Biochem 2021; 69:1509-1516. [PMID: 34278604 DOI: 10.1002/bab.2223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 11/09/2022]
Abstract
Luteinizing hormone (LH)/lutropin is an interstitial cell-stimulating hormone playing a predominant role in the reproductive system, and highly correlated with the infertility treatment in both men and women. This research was concentrated to quantify LH level by using interdigitated electrode sensor. To improve the electric current flow, sensing electrode was modified with graphene oxide (GO) and the aptamer probe was attached on GO through biotin-streptavidin linker. Current responses were measured with aptamer-LH interaction at the target concentrations between 7.5 nM and 1 μM and the detection limit of LH was calculated as 60 nM with the determination coefficient (R2 ) value, 0.9229 [y = 1.296x - 2.8435] on a linear range from 30 nM to 1 μM. Further, biofouling effect on sensing electrode surface was analyzed with complementary aptamer sequence, control proteins (albumin and globulin). The above GO-aptamer-modified interdigitated electrode sensor helps to quantify LH level and diagnose gynecological endocrinology-related complications.
Collapse
Affiliation(s)
- Huanhuan Sun
- Department of Obstetrics and Gynecology, Harbin Red Cross Central Hospital, Harbin, Heilongjiang, China
| | - Xiucui Bao
- Department of Obstetrics, Yihe Maternity District of Cangzhou People's Hospital, Cangzhou, Hebei, China
| | - Xiaoling Yao
- Department of Obstetrics and Gynecology, Yihe Maternity District of Cangzhou People's Hospital, Cangzhou, Hebei, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Yifei Min
- Department of Gynecology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213003, China
| |
Collapse
|
24
|
Murti BT, Putri AD, Huang YJ, Wei SM, Peng CW, Yang PK. Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv 2021; 11:20403-20422. [PMID: 35479927 PMCID: PMC9033966 DOI: 10.1039/d1ra01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.
Collapse
Affiliation(s)
- Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
| | - Athika Darumas Putri
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yi-June Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Shih-Min Wei
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Chih-Wei Peng
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Po-Kang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Department of Biomedical Sciences and Engineering, National Central University Chung-li Taiwan
| |
Collapse
|
25
|
Qiu Z, Shen Q, Jiang C, Yao L, Sun X, Li J, Duan C, Li R, Li X, Gopinath SCB, Anbu P, Lakshmipriya T, Li X. Alzheimer's Disease Determination by a Dual Probe on Gold Nanourchins and Nanohorn Hybrids. Int J Nanomedicine 2021; 16:2311-2322. [PMID: 33776435 PMCID: PMC7989959 DOI: 10.2147/ijn.s302396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative chronic disorder that causes dementia and problems in thinking, cognitive impairment and behavioral changes. Amyloid-beta (Aβ) is a peptide involved in AD progression, and a high level of Aβ is highly correlated with severe AD. Identifying and quantifying Aβ levels helps in the early treatment of AD and reduces the factors associated with AD. Materials and Methods This research introduced a dual probe detection system involving aptamers and antibodies to identify Aβ. Aptamers and antibodies were attached to the gold (Au) urchin and hybrid on the carbon nanohorn-modified surface. The nanohorn was immobilized on the sensor surface by using an amine linker, and then a Au urchin dual probe was immobilized. Results This dual probe-modified surface enhanced the current flow during Aβ detection compared with the surface with antibody as the probe. This dual probe interacted with higher numbers of Aβ peptides and reached the detection limit at 10 fM with R2=0.992. Furthermore, control experiments with nonimmune antibodies, complementary aptamer sequences and control proteins did not display the current responses, indicating the specific detection of Aβ. Conclusion Aβ-spiked artificial cerebrospinal fluid showed a similar response to current changes, confirming the selective identification of Aβ.
Collapse
Affiliation(s)
- Zhengguo Qiu
- Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, People's Republic of China
| | - Qianhe Shen
- Department of Anesthesiology, Xi'an GemFlower Changqing Hospital, Xi'an, Shaanxi, 710200, People's Republic of China
| | - Chao Jiang
- The Third Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Li Yao
- Department of Neurology, The Hospital of Xidian Group, Xi'an, Shaanxi, 710077, People's Republic of China
| | - Xiaopeng Sun
- Department of Otolaryngology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Jing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Chongzhen Duan
- Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, People's Republic of China
| | - Rui Li
- Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, People's Republic of China
| | - Xiuli Li
- Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, People's Republic of China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000, Malaysia
| | - Periasamy Anbu
- Department of Biological Engineering, College of Engineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000, Malaysia
| | - Xu Li
- Department of Surgery and Anesthesiology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|