1
|
Mosavie M, Rynne J, Fish M, Smith P, Jennings A, Singh S, Millar J, Harvala H, Mora A, Kaloyirou F, Griffiths A, Hopkins V, Washington C, Estcourt LJ, Roberts D, Shankar-Hari M. Changes in Phenotypic and Molecular Features of Naïve and Central Memory T Helper Cell Subsets following SARS-CoV-2 Vaccination. Vaccines (Basel) 2024; 12:1040. [PMID: 39340069 PMCID: PMC11435719 DOI: 10.3390/vaccines12091040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Molecular changes in lymphocytes following SARS-CoV-2 vaccination are incompletely understood. We hypothesized that studying the molecular (transcriptomic, epigenetic, and T cell receptor (TCR) repertoire) changes in CD4+ T cells following SARS-CoV-2 vaccination could inform protective mechanisms and refinement of future vaccines. We tested this hypothesis by reporting alterations in CD4+ T cell subsets and molecular features of CD4+ naïve and CD4+ central memory (CM) subsets between the unvaccinated and vaccinated groups. Compared with the unvaccinated, the vaccinated had higher HLA-DR expression in CD4+ T subsets, a greater number of differentially expressed genes (DEGs) that overlapped with key differentially accessible regions (DARs) along the chromatin linked to inflammasome activation, translation, regulation (of apoptosis, inflammation), and significant changes in clonal architecture beyond SARS-CoV-2 specificity. Several of these differences were more pronounced in the CD4+CM subset. Taken together, our observations imply that the COVID-19 vaccine exerts its protective effects via modulation of acute inflammation to SARS-CoV-2 challenge.
Collapse
Affiliation(s)
- Mia Mosavie
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennifer Rynne
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Matthew Fish
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Peter Smith
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Aislinn Jennings
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Shivani Singh
- Department of Medicine, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Jonathan Millar
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Heli Harvala
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Microbiology Services, Colindale, NHS Blood and Transplant, Colindale NW9 5BG, UK
| | - Ana Mora
- Heart Lung Research Institute Clinical Research Facility, Cambridge CB2 0BB, UK
| | - Fotini Kaloyirou
- Statistics and Clinical Research, NHS Blood and Transplant, Cambridge CB2 0PT, UK
| | - Alexandra Griffiths
- Statistics and Clinical Research, NHS Blood and Transplant, Bristol BS34 7QH, UK
| | - Valerie Hopkins
- Statistics and Clinical Research, NHS Blood and Transplant, Cambridge CB2 0PT, UK
| | | | - Lise J Estcourt
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David Roberts
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
- Department of Critical Care Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| |
Collapse
|
2
|
Zhu F, Zheng W, Gong Y, Zhang J, Yu Y, Zhang J, Liu M, Guan F, Lei J. Trichinella spiralis Infection Inhibits the Efficacy of RBD Protein of SARS-CoV-2 Vaccination via Regulating Humoral and Cellular Immunity. Vaccines (Basel) 2024; 12:729. [PMID: 39066367 PMCID: PMC11281533 DOI: 10.3390/vaccines12070729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccines are the most effective and feasible way to control pathogen infection. Helminths have been reported to jeopardize the protective immunity mounted by several vaccines. However, there are no experimental data about the effect of helminth infection on the effectiveness of COVID-19 vaccines. Here, a mouse model of trichinosis, a common zoonotic disease worldwide, was used to investigate effects of Trichinella spiralis infection on the RBD protein vaccine of SARS-CoV-2 and the related immunological mechanism, as well as the impact of albendazole (ALB) deworming on the inhibitory effect of the parasite on the vaccination. The results indicated that both the enteric and muscular stages of T. spiralis infection inhibited the vaccine efficacy, evidenced by decreased levels of IgG, IgM, sIgA, and reduced serum neutralizing antibodies, along with suppressed splenic germinal center (GC) B cells in the vaccinated mice. Pre-exposure to trichinosis promoted Th2 and/or Treg immune responses in the immunized mice. Furthermore, ALB treatment could partially reverse the inhibitory effect of T. spiralis infection on the efficiency of the vaccination, accompanied by a restored proportion of splenic GC B cells. Therefore, given the widespread prevalence of helminth infections worldwide, deworming therapy needs to be considered when implementing COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Feifan Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Yiyan Gong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Jinyuan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Yihan Yu
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Jixian Zhang
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Mengjun Liu
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| |
Collapse
|
3
|
Napoli C, Coscioni E, Trama U, Strozziero MG, Benincasa G. An evidence-based debate on epigenetics and immunosenescence in COVID-19. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100069. [PMID: 37781451 PMCID: PMC10539895 DOI: 10.1016/j.crimmu.2023.100069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Immunosenescence contributes to the decline of immune function leading to a reduced ability to respond to severe coronavirus disease 2019 (COVID-19) in elderly patients. Clinical course of COVID-19 is widely heterogeneous and guided by the possible interplay between genetic background and epigenetic-sensitive mechanisms underlying the immunosenescence which could explain, at least in part, the higher percentage of disease severity in elderly individuals. The most convincing evidence regards the hypomethylation of the angiotensin-converting enzyme 2 (ACE2) promoter gene in lungs as well as the citrullination of histone H3 in neutrophils which have been associated with worsening of COVID-19 outcome in elderly patients. In contrast, centenarians who have showed milder symptoms have been associated to a younger "epigenetic age" based on DNA methylation profiles at specific genomic sites (epigenetic clock). Some large prospective studies showed that the acceleration of epigenetic aging as well as the shortening of telomeres were significantly associated with lymphopenia and poor outcome suggesting prognostic biomarkers in elderly COVID-19 patients. Furthermore, randomized clinical trials showed that statins, L-arginine, and resveratrol could mediate anti-inflammatory effects via indirect epigenetic interference and might improve COVID-19 outcome. Here, we discuss the epigenetic-sensitive events which might contribute to increase the risk of severity and mortality in older subjects and possible targeted therapies to counteract immunosenescence.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Enrico Coscioni
- Division of Cardiac Surgery, AOU San Giovanni di Dio e Ruggid'Aragona, 84131, Salerno, Italy
| | - Ugo Trama
- Regional Pharmaceutical Unit, Campania Region, 80143 Naples, Italy
| | - Maria Grazia Strozziero
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS Synlab SDN Naples Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
4
|
Meo C, Palma G, Bruzzese F, Budillon A, Napoli C, de Nigris F. Spontaneous cancer remission after COVID-19: insights from the pandemic and their relevance for cancer treatment. J Transl Med 2023; 21:273. [PMID: 37085802 PMCID: PMC10119533 DOI: 10.1186/s12967-023-04110-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Early in the COVID-19 pandemic, it emerged that the risk of severe outcomes was greater in patients with co-morbidities, including cancer. The huge effort undertaken to fight the pandemic, affects the management of cancer care, influencing their outcome. Despite the high fatality rate of COVID-19 disease in cancer patients, rare cases of temporary or prolonged clinical remission from cancers after SARS-CoV-2 infection have been reported. We have reviewed sixteen case reports of COVID-19 disease with spontaneous cancer reduction of progression. Fourteen cases of remission following viral infections and two after anti-SARS-CoV-2 vaccination. The immune response to COVID-19, may be implicated in both tumor regression, and progression. Specifically, we discuss potential mechanisms which include oncolytic and priming hypotheses, that may have contributed to the cancer regression in these cases and could be useful for future options in cancer treatment.
Collapse
Affiliation(s)
- Concetta Meo
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy.
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate - National Institute of Cancer - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138, Naples, Italy
- Advanced Medical and Surgical Science (DAMSS), School of Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
5
|
Fiorentino G, Benincasa G, Coppola A, Franzese M, Annunziata A, Affinito O, Viglietti M, Napoli C. Targeted genetic analysis unveils novel associations between ACE I/D and APO T158C polymorphisms with D-dimer levels in severe COVID-19 patients with pulmonary embolism. J Thromb Thrombolysis 2023; 55:51-59. [PMID: 36371754 PMCID: PMC9660132 DOI: 10.1007/s11239-022-02728-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/14/2022]
Abstract
Only a percentage of COVID-19 patients develop thrombotic complications. We hypothesized that genetic profiles may explain part of the inter-individual differences. Our goal was to evaluate the genotypic distribution of targeted DNA polymorphisms in COVID-19 patients complicated (PE+) or not (PE-) by pulmonary embolism. We designed a retrospective observational study enrolling N = 94 consecutive patients suffering severe COVID-19 with pulmonary embolism (PE+, N = 47) or not (PE-, N = 47) during hospitalization. A panel of N = 13 prothrombotic DNA polymorphisms (FV R506Q and H1299R, FII G20210A, MTHFR C677T and A1298C, CBS 844ins68, PAI-1 4G/5G, GPIIIa HPA-1 a/b, ACE I/D, AGT T9543C, ATR-1 A1166C, FGB - 455G > A, FXIII103G > T) and N = 2 lipid metabolism-related DNA polymorphisms (APOE T 112C and T158C) were investigated using Reverse Dot Blot technique. Then, we investigated possible associations between genotypic subclasses and demographic, clinical, and laboratory parameters including age, obesity, smoking, pro-inflammatory cytokines, drug therapy, and biomarkers of thrombotic risk such as D-dimer (DD). We found that 58.7% of PE+ had homozygous mutant D/D genotype at ACE I/D locus vs. PE- (40.4%) and 87% of PE+ had homozygous mutant C/C genotype at APOE T158C locus vs. PE- (68.1%). In PE+ group, DD levels were significantly higher in D/D and I/D genotypes at ACE I/D locus (P = 0.00066 and P = 0.00023, respectively) and in C/C and T/C genotypes at APOE T158C locus (P = 1.6e-06 and P = 0.0012, respectively) than PE- group. For the first time, we showed significant associations between higher DD levels and ACE I/D and APOE T158C polymorphisms in PE+ vs. PE- patients suggesting potential useful biomarkers of poor clinical outcome.
Collapse
Affiliation(s)
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Antonietta Coppola
- Department of Intensive Care, A.O.R.N. Ospedali dei Colli, Naples, Italy
| | | | - Anna Annunziata
- Department of Intensive Care, A.O.R.N. Ospedali dei Colli, Naples, Italy
| | | | - Mario Viglietti
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
6
|
Vitali L, Merlini A, Galvagno F, Proment A, Sangiolo D. Biological and Exploitable Crossroads for the Immune Response in Cancer and COVID-19. Biomedicines 2022; 10:2628. [PMID: 36289890 PMCID: PMC9599827 DOI: 10.3390/biomedicines10102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
The outbreak of novel coronavirus disease 2019 (COVID-19) has exacted a disproportionate toll on cancer patients. The effects of anticancer treatments and cancer patients' characteristics shared significant responsibilities for this dismal outcome; however, the underlying immunopathological mechanisms are far from being completely understood. Indeed, despite their different etiologies, SARS-CoV-2 infection and cancer unexpectedly share relevant immunobiological connections. In the pathogenesis and natural history of both conditions, there emerges the centrality of the immune response, orchestrating the timed appearance, functional and dysfunctional roles of multiple effectors in acute and chronic phases. A significant number (more than 600) of observational and interventional studies have explored the interconnections between COVID-19 and cancer, focusing on aspects as diverse as psychological implications and prognostic factors, with more than 4000 manuscripts published so far. In this review, we reported and discussed the dynamic behavior of the main cytokines and immune system signaling pathways involved in acute vs. early, and chronic vs. advanced stages of SARS-CoV-2 infection and cancer. We highlighted the biological similarities and active connections within these dynamic disease scenarios, exploring and speculating on possible therapeutic crossroads from one setting to the other.
Collapse
Affiliation(s)
- Letizia Vitali
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Federica Galvagno
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessia Proment
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| |
Collapse
|
7
|
Kistenev YV, Vrazhnov DA, Shnaider EE, Zuhayri H. Predictive models for COVID-19 detection using routine blood tests and machine learning. Heliyon 2022; 8:e11185. [PMID: 36311357 PMCID: PMC9595489 DOI: 10.1016/j.heliyon.2022.e11185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The problem of accurate, fast, and inexpensive COVID-19 tests has been urgent till now. Standard COVID-19 tests need high-cost reagents and specialized laboratories with high safety requirements, are time-consuming. Data of routine blood tests as a base of SARS-CoV-2 invasion detection allows using the most practical medicine facilities. But blood tests give general information about a patient's state, which is not directly associated with COVID-19. COVID-19-specific features should be selected from the list of standard blood characteristics, and decision-making software based on appropriate clinical data should be created. This review describes the abilities to develop predictive models for COVID-19 detection using routine blood tests and machine learning.
Collapse
Affiliation(s)
- Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia
| | - Denis A. Vrazhnov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia
| | - Ekaterina E. Shnaider
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia
| | - Hala Zuhayri
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia
| |
Collapse
|
8
|
Teresa Vietri M, D'Elia G, Caliendo G, Passariello L, Albanese L, Maria Molinari A, Francesco Angelillo I. Antibody levels after BNT162b2 vaccine booster and SARS-CoV-2 Omicron infection. Vaccine 2022; 40:5726-5731. [PMID: 36041940 PMCID: PMC9411148 DOI: 10.1016/j.vaccine.2022.08.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
In the present study, immunogenicity data in 61 vaccinated healthcare workers (HCWs) either infection naïve (naïve HCWs) or with infection of Delta and/or Omicron COVID-19 (experienced HCWs) were evaluated up to 270 days after the second dose of BNT162b2 vaccine and up to 90 days after a booster dose. A decrease in antibody levels at 270 days following administration of the second dose (p = 0.0335) was observed, although values did not fall below the positivity threshold (33.8 BAU/ml). After booster vaccination, antibody levels increased after 30 days (p = 0.0486), with much higher values than after first and second vaccination. Antibody levels then decreased at 60 and 90 days after the booster dose. A comparison between mean antibody levels of naïve and experienced HCWs revealed higher values in experienced HCWs, resulting from both natural and vaccination-induced immunity. A total of 14.7% of HCWs contracted the Omicron virus variant after the vaccine booster, although none showed severe symptoms. These results support that a booster dose results in a marked increase in antibody response that subsequently decreases over time.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 80138 Naples, Italy; U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Giovanna D'Elia
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Gemma Caliendo
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Luana Passariello
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Luisa Albanese
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Anna Maria Molinari
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 80138 Naples, Italy; U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Italo Francesco Angelillo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via L. Armanni 5, 80138 Naples, Italy.
| |
Collapse
|