1
|
Li B, Raghwani J, Hill SC, François S, Lefrancq N, Liang Y, Wang Z, Dong L, Lemey P, Pybus OG, Tian H. Association of poultry vaccination with interspecies transmission and molecular evolution of H5 subtype avian influenza virus. SCIENCE ADVANCES 2025; 11:eado9140. [PMID: 39841843 PMCID: PMC11753422 DOI: 10.1126/sciadv.ado9140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
The effectiveness of poultry vaccination in preventing the transmission of highly pathogenic avian influenza viruses (AIVs) has been debated, and its impact on wild birds remains uncertain. Here, we reconstruct the movements of H5 subtype AIV lineages among vaccinated poultry, unvaccinated poultry, and wild birds, worldwide, from 1996 to 2023. We find that there is a time lag in viral transmission among different host populations and that movements from wild birds to unvaccinated poultry were more frequent than those from wild birds to vaccinated poultry. Furthermore, our findings suggest that the HA (hemagglutinin) gene of the AIV lineage that circulated predominately in Chinese poultry experienced greater nonsynonymous divergence and adaptive fixation than other lineages. Our results indicate that the epidemiological, ecological, and evolutionary consequences of widespread AIV vaccination in poultry may be linked in complex ways and that much work is needed to better understand how such interventions may affect AIV transmission to, within, and from wild birds.
Collapse
Affiliation(s)
- Bingying Li
- State Key Laboratory of Remote Sensing Science, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Research Center for Respiratory Infectious Diseases, School of National Safety and Emergency Management, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Jayna Raghwani
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Sarah C. Hill
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Sarah François
- Department of Biology, University of Oxford, Oxford, UK
- UMR DGIMI, University of Montpellier, INRAE, Montpellier, France
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yilin Liang
- State Key Laboratory of Remote Sensing Science, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Research Center for Respiratory Infectious Diseases, School of National Safety and Emergency Management, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Research Center for Respiratory Infectious Diseases, School of National Safety and Emergency Management, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Phillipe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium
| | - Oliver G. Pybus
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
- Department of Biology, University of Oxford, Oxford, UK
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Research Center for Respiratory Infectious Diseases, School of National Safety and Emergency Management, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Luczo JM, Spackman E. Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift. FEMS Microbiol Rev 2024; 48:fuae014. [PMID: 38734891 PMCID: PMC11149724 DOI: 10.1093/femsre/fuae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, Victoria 3219, Australia
| | - Erica Spackman
- Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605, United States
| |
Collapse
|
3
|
Wang Z, Li H, Li Y, Wu Z, Ai H, Zhang M, Rong L, Blinov ML, Tong Q, Liu L, Sun H, Pu J, Feng W, Liu J, Sun Y. Mixed selling of different poultry species facilitates emergence of public-health-threating avian influenza viruses. Emerg Microbes Infect 2023; 12:2214255. [PMID: 37191631 DOI: 10.1080/22221751.2023.2214255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Live poultry markets (LPMs) are regarded as hubs for avian influenza virus (AIV) transmission in poultry and are a major risk factor in human AIV infections. We performed an AIV surveillance study at a wholesale LPM, where different poultry species were sold in separate stalls, and nine retail LPMs, which received poultry from the wholesale LPM but where different poultry species were sold in one stall, in Guangdong province from 2017 to 2019. A higher AIV isolation rate was observed at the retail LPMs than the wholesale LPM. H9N2 was the dominant AIV subtype and was mainly present in chickens and quails. The genetic diversity of H9N2 viruses was greater at the retail LPMs, where a complex system of two-way transmission between different poultry species had formed. The isolated H9N2 viruses could be classed into four genotypes: G57 and the three novel genotypes, NG164, NG165, and NG166. The H9N2 AIVs isolated from chickens and quails at the wholesale LPM only belonged to the G57 and NG164 genotypes, respectively. However, the G57, NG164, and NG165 genotypes were identified in both chickens and quails at the retail LPMs. We found that the replication and transmission of the NG165 genotype were more adaptive to both poultry and mammalian models than those of its precursor genotype, NG164. Our findings revealed that mixed poultry selling at retail LPMs has increased the genetic diversity of AIVs, which might facilitate the emergence of novel viruses that threaten public health.
Collapse
Affiliation(s)
- Zhen Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- State Key Laboratories of Agrobiotechnology, and Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Hongkui Li
- Liaoning Agricultural Development Service Center, Shenyang, People's Republic of China
| | - Yuhan Li
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Zhuanli Wu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Hui Ai
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Qi Tong
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Litao Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Wenhai Feng
- State Key Laboratories of Agrobiotechnology, and Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Evolution of the North American Lineage H7 Avian Influenza Viruses in Association with H7 Virus's Introduction to Poultry. J Virol 2022; 96:e0027822. [PMID: 35862690 PMCID: PMC9327676 DOI: 10.1128/jvi.00278-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The incursions of H7 subtype low-pathogenicity avian influenza virus (LPAIV) from wild birds into poultry and its mutations to highly pathogenic avian influenza virus (HPAIV) have been an ongoing concern in North America. Since 2000, 10 phylogenetically distinct H7 virus outbreaks from wild birds have been detected in poultry, six of which mutated to HPAIV. To study the molecular evolution of the H7 viruses that occurs when changing hosts from wild birds to poultry, we performed analyses of the North American H7 hemagglutinin (HA) genes to identify amino acid changes as the virus circulated in wild birds from 2000 to 2019. Then, we analyzed recurring HA amino acid changes and gene constellations of the viruses that spread from wild birds to poultry. We found six HA amino acid changes occurring during wild bird circulation and 10 recurring changes after the spread to poultry. Eight of the changes were in and around the HA antigenic sites, three of which were supported by positive selection. Viruses from each H7 outbreak had a unique genotype, with no specific genetic group associated with poultry outbreaks or mutation to HPAIV. However, the genotypes of the H7 viruses in poultry outbreaks tended to contain minor genetic groups less observed in wild bird H7 viruses, suggesting either a biased sampling of wild bird AIVs or a tendency of having reassortment with minor genetic groups prior to the virus's introduction to poultry. IMPORTANCE Wild bird-origin H7 subtype avian influenza viruses are a constant threat to commercial poultry, both directly by the disease they cause and indirectly through trade restrictions that can be imposed when the virus is detected in poultry. It is important to understand the genetic basis of why the North American lineage H7 viruses have repeatedly crossed the species barrier from wild birds to poultry. We examined the amino acid changes in the H7 viruses associated with poultry outbreaks and tried to determine gene reassortment related to poultry adaptation and mutations to HPAIV. The findings in this study increase the understanding of the evolutionary pathways of wild bird AIV before infecting poultry and the HA changes associated with adaptation of the virus in poultry.
Collapse
|
5
|
Sun R, Jiang W, Liu S, Peng C, Yin X, Liu H, Tang L. Emergence of novel reassortant H5N6 influenza viruses in poultry and humans in Sichuan Province, China, 2021. J Infect 2022; 84:e50-e52. [PMID: 35259421 DOI: 10.1016/j.jinf.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Rongzhao Sun
- Northeast Agricultural University, Haerbin, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shuo Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Lijie Tang
- Northeast Agricultural University, Haerbin, China.
| |
Collapse
|
6
|
He WT, Lu M, Xing G, Shao Y, Zhang M, Yang Y, Li X, Zhang L, Li G, Cao Z, Su S, Veit M, He H. Emergence and adaptive evolution of influenza D virus. Microb Pathog 2021; 160:105193. [PMID: 34536503 DOI: 10.1016/j.micpath.2021.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
As a novel member of the Orthomyxoviridae, influenza D virus (IDV) was firstly isolated from swine. However, cattle were found to serve as its primary reservoir. The study of IDV emergence can shed light into the dynamics of zoonotic infections and interspecies transmission. Although there is an increasing number of strains and sequenced IDV strains, their origin, epidemiology and evolutionary dynamics remain unclear. In this study, we reconstruct the diversity and evolutionary dynamics of IDVs. Molecular detection of swine tissue samples shows that six IDV positive samples were identified in the Eastern China. Phylogenetic analyses suggest three major IDV lineages designated as D/Japan, D/OK and D/660 as well as intermediate lineages. IDVs show strong association with geographical location indicating a high level of local transmission, which suggests IDVs tend to establish a local lineage of in situ evolution. In addition, the D/OK lineage widely circulates in swine in Eastern China, and all of the Chinese virus isolates form a distinct sub-clade (D/China sub-lineage). Furthermore, we identified important amino acids in the HEF gene under positive selection that might affect its receptor binding cavity relevant for its broader cell tropism. The combined results highlight that more attention should be paid to the potential threat of IDV to livestock and farming in China.
Collapse
Affiliation(s)
- Wan-Ting He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gang Xing
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yuekun Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yichen Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Letian Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gairu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zongxi Cao
- Hainan Academician Workstation, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; San-ya Research Institute of Nanjing Agricultural University, Hainan, Sanya, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Straße 7-13, 14163, Berlin, Germany
| | - Haijian He
- Agricultural College, Jinhua Poletecnic, Jinhua, 321007, China.
| |
Collapse
|
7
|
Chen J, Li X, Xu L, Xie S, Jia W. Health threats from increased antigenicity changes in H5N6-dominant subtypes, 2020 China. J Infect 2021; 83:e9-e11. [PMID: 34147530 DOI: 10.1016/j.jinf.2021.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Junhong Chen
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Li
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lingyu Xu
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shumin Xie
- Experimental Animal Center, South China Agricultural University, Guangzhou, China
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
8
|
Chen S, Quan K, Wang D, Du Y, Qin T, Peng D, Liu X. Truncation or Deglycosylation of the Neuraminidase Stalk Enhances the Pathogenicity of the H5N1 Subtype Avian Influenza Virus in Mallard Ducks. Front Microbiol 2020; 11:583588. [PMID: 33193225 PMCID: PMC7641914 DOI: 10.3389/fmicb.2020.583588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 12/02/2022] Open
Abstract
H5N1 subtype avian influenza virus (AIV) with a deletion of 20 amino acids at residues 49–68 in the stalk region of neuraminidase (NA) became a major epidemic virus. To determine the effect of truncation or deglycosylation of the NA stalk on virulence, we used site-directed mutagenesis to insert 20 amino acids in the short-stalk virus A/mallard/Huadong/S/2005 (SY) to recover the long-stalk virus (rSNA+). A series of short-stalk or deglycosylated-stalk viruses were also constructed basing on the long-stalk virus, and then the characteristics and pathogenicity of the resulting viruses were evaluated. The results showed that most of the short-stalk or deglycosylated-stalk viruses had smaller plaques, and increased thermal and low-pH stability, and a decreased neuraminidase activity when compared with the virus rSNA+. In a mallard ducks challenge study, most of the short-stalk or deglycosylated-stalk viruses showed increased pathological lesions and virus titers in the organ tissues and increased virus shedding in the oropharynx and cloaca when compared with the rSNA+ virus, while most of the short-stalk viruses, especially rSNA-20, showed higher pathogenicity than the deglycosylated-stalk virus. In addition, the short-stalk viruses showed a significantly upregulated expression of the immune-related factors in the lungs of the infected mallard ducks, including IFN-α, Mx1, and IL-8. The results suggested that NA stalk truncation or deglycosylation increases the pathogenicity of H5N1 subtype AIV in mallard ducks, which will provide a pre-warning for prevention and control of H5N1 subtype avian influenza in the waterfowl.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yinping Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|