1
|
Tan C, Dong Y, Wang J, Yang X. Vanadyl acetylacetonate attenuates Aβ pathogenesis in APP/PS1 transgenic mice depending on the intervention stage. NEW J CHEM 2019. [DOI: 10.1039/c9nj00820a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
VAC treatment caused different Grp75 responses before and after Aβ plaque formation.
Collapse
Affiliation(s)
- Chang Tan
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology
- School of Pharmaceutical Science
- Peking University Health Science Center
- Beijing 100191
- China
| | - Yaqiong Dong
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology
- School of Pharmaceutical Science
- Peking University Health Science Center
- Beijing 100191
- China
| | - Jing Wang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology
- School of Pharmaceutical Science
- Peking University Health Science Center
- Beijing 100191
- China
| | - Xiaoda Yang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology
- School of Pharmaceutical Science
- Peking University Health Science Center
- Beijing 100191
- China
| |
Collapse
|
2
|
Ippolito JA, Krell ES, Cottrell J, Meyer R, Clark D, Nguyen D, Sudah S, Muñoz M, Lim E, Lin A, Lee TJH, O'Connor JP, Benevenia J, Lin SS. Effects of local vanadium delivery on diabetic fracture healing. J Orthop Res 2017; 35:2174-2180. [PMID: 28084655 DOI: 10.1002/jor.23521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/09/2017] [Indexed: 02/04/2023]
Abstract
This study evaluated the effect of local vanadyl acetylacetonate (VAC), an insulin mimetic agent, upon the early and late parameters of fracture healing in rats using a standard femur fracture model. Mechanical testing, and radiographic scoring were performed, as well as histomorphometry, including percent bone, percent cartilage, and osteoclast numbers. Fractures treated with local 1.5 mg/kg VAC possessed significantly increased mechanical properties compared to controls at 6 weeks post-fracture, including increased torque to failure (15%; p = 0.046), shear modulus (89%; p = 0.043), and shear stress (81%; p = 0.009). The radiographic scoring analysis showed increased cortical bridging at 4 weeks and 6 weeks (119%; p = 0.036 and 209%; p = 0.002) in 1.5 mg/kg VAC treated groups. Histomorphometry of the fracture callus at days 10 and 14 showed increased percent cartilage (121%; p = 0.009 and 45%; p = 0.035) and percent mineralized tissue (66%; p = 0.035 and 58%; p = 0.006) with local VAC treated groups compared to control. Additionally, fewer osteoclasts were observed in the local VAC treated animals as compared to controls at day 14 (0.45% ± 0.29% vs. 0.83% ± 0.36% of callus area; p = 0.032). The results suggest local administration of VAC acts to modulate osteoclast activity and increase percentage of early callus cartilage, ultimately enhancing mechanical properties comparably to non-diabetic animals treated with local VAC. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2174-2180, 2017.
Collapse
Affiliation(s)
- Joseph A Ippolito
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Ethan S Krell
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey
| | - Ryan Meyer
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Devin Clark
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Daniel Nguyen
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Suleiman Sudah
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Maximillian Muñoz
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Elisha Lim
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Anthony Lin
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Thomas Jae Hoon Lee
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - James Patrick O'Connor
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Joseph Benevenia
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Sheldon S Lin
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| |
Collapse
|
3
|
Zabierowski P, Szklarzewicz J, Gryboś R, Modryl B, Nitek W. Assemblies of salen-type oxidovanadium(iv) complexes: substituent effects and in vitro protein tyrosine phosphatase inhibition. Dalton Trans 2014; 43:17044-53. [DOI: 10.1039/c4dt02344g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic study of 5,5′-disubstituted oxidovanadium(iv) complexes with a chiral salen type ligand showed variable assemblies of complex molecules dependent on steric and electronic factors of the substituents.
Collapse
Affiliation(s)
| | | | - Ryszard Gryboś
- Faculty of Chemistry
- Jagiellonian University
- 30-060 Kraków, Poland
| | - Barbara Modryl
- Faculty of Pharmacy
- Jagiellonian University Medical College
- Kraków 30-688, Poland
| | - Wojciech Nitek
- Faculty of Chemistry
- Jagiellonian University
- 30-060 Kraków, Poland
| |
Collapse
|
4
|
Krośniak M, Kowalska J, Francik R, Gryboś R, Blusz M, Kwiatek WM. Influence of vanadium-organic ligands treatment on selected metal levels in kidneys of STZ rats. Biol Trace Elem Res 2013; 153:319-28. [PMID: 23661329 PMCID: PMC3667367 DOI: 10.1007/s12011-013-9688-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022]
Abstract
The objective of the study was to investigate the effects of five organic vanadium complexes supplement and a small dose of insulin injection on V, Fe, Cu, Zn, Mn, Ca, and K level in the streptozotocin diabetic rat's kidney during a 5-week treatment with the tested complexes. In all groups of animals, metal level in the lyophilized kidney organs was investigated by means of the proton induced X-ray emission method. Tissue vanadium level was naturally higher in vanadium-treated rats. The maximum level of vanadium was observed in the kidney (x(mean) = 16.6 μg/g). The influence of vanadium administration on other metal level in rat's tissue was also investigated. Spectacular influence of vanadium action was observed on copper and zinc level in examined tissue.
Collapse
Affiliation(s)
- Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 30-688 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
5
|
Gryboś R, Paciorek P, Szklarzewicz JT, Matoga D, Zabierowski P, Kazek G. Novel vanadyl complexes of acetoacetanilide: Synthesis, characterization and inhibition of proteintyrosine phosphatase. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Paglia DN, Wey A, Park AG, Breitbart EA, Mehta SK, Bogden JD, Kemp FW, Benevenia J, O'Connor JP, Lin SS. The effects of local vanadium treatment on angiogenesis and chondrogenesis during fracture healing. J Orthop Res 2012; 30:1971-8. [PMID: 22653614 DOI: 10.1002/jor.22159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 05/09/2012] [Indexed: 02/04/2023]
Abstract
This study quantified the effects of local intramedullary delivery of an organic vanadium salt, which may act as an insulin-mimetic on fracture healing. Using a BB Wistar rat femoral fracture model, local vanadyl acetylacetonate (VAC) was delivered to the fracture site and histomorphometry, mechanical testing, and immunohistochemistry were performed. Callus percent cartilage was 200% higher at day 7 (p < 0.05) and 88% higher at day 10 (p < 0.05) in the animals treated with 1.5 mg/kg of VAC. Callus percent mineralized tissue was 37% higher at day 14 (p < 0.05) and 31% higher at day 21 (p < 0.05) in the animals treated with 1.5 mg/kg of VAC. Maximum torque to failure was 104% and 154% higher at 4 weeks post-fracture (p < 0.05) for the healing femurs from the VAC-treated (1.5 and 3.0 mg/kg) animals. Animals treated with other VAC doses demonstrated increased mechanical parameters at 4 weeks (p < 0.05). Immunohistochemistry detected 62% more proliferating cells at days 7 (p < 0.05) and 94% more at day 10 (p < 0.05) in the animals treated with 1.5 mg/kg VAC. Results showed 100% more vascular endothelial growth factor-C (VEGF-C) positive cells and 80% more blood vessels at day 7 (p < 0.05) within the callus subperiosteal region of VAC-treated animals (1.5 mg/kg) compared to controls. The results suggest that local VAC treatment affects chondrogenesis and angiogenesis within the first 7-10 days post-fracture, which leads to enhanced mineralized tissue formation and accelerated fracture repair as early as 3-4 weeks post-fracture.
Collapse
Affiliation(s)
- David N Paglia
- Department of Orthopaedics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07103, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gao Z, Zhang C, Yu S, Yang X, Wang K. Vanadyl bisacetylacetonate protects β cells from palmitate-induced cell death through the unfolded protein response pathway. J Biol Inorg Chem 2011; 16:789-98. [PMID: 21512771 DOI: 10.1007/s00775-011-0780-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/26/2011] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) stress induced by free fatty acids (FFA) is important to β-cell loss during the development of type 2 diabetes. To test whether vanadium compounds could influence ER stress and the responses in their mechanism of antidiabetic effects, we investigated the effects and the mechanism of vanadyl bisacetylacetonate [VO(acac)(2)] on β cells upon treatment with palmitate, a typical saturated FFA. The experimental results showed that VO(acac)(2) could enhance FFA-induced signaling pathways of unfolded protein responses by upregulating the prosurvival chaperone immunoglobulin heavy-chain binding protein/78-kDa glucose-regulated protein and downregulating the expression of apoptotic C/EBP homologous protein, and consequently the reduction of insulin synthesis. VO(acac)(2) also ameliorated FFA-disturbed Ca(2+) homeostasis in β cells. Overall, VO(acac)(2) enhanced stress adaption, thus protecting β cells from palmitate-induced apoptosis. This study provides some new insights into the mechanisms of antidiabetic vanadium compounds.
Collapse
Affiliation(s)
- Zhonglan Gao
- State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Zhang SQ, Zhong XY, Chen GH, Lu WL, Zhang Q. The anti-diabetic effects and pharmacokinetic profiles of bis(maltolato)oxovanadium in non-diabetic and diabetic rats. J Pharm Pharmacol 2010; 60:99-105. [DOI: 10.1211/jpp.60.1.0013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The purpose of this study was to evaluate the anti-diabetic effects and pharmacokinetics of bis(maltolato)oxovanadium (BMOV) in rats. The anti-diabetic study was carried out in non-diabetic and diabetic rats by single-dose subcutaneous and intragastric administration. Pharmacokinetic investigation was performed using non-diabetic rats. Results showed that BMOV significantly decreased plasma glucose levels in diabetic rats at all given doses, and restored hyperglycaemic values to normal values after subcutaneous injections at doses of 4 and 8 mg vanadium (V)/kg or after intragastric administration at doses of 14 and 28 mgV/kg, respectively, but did not affect the plasma glucose level in non-diabetic rats. BMOV could be rapidly absorbed, slowly eliminated from plasma, widely distributed in various tissues and accumulated to a greater extent in the femur tissue. The average absolute bioavailability for intragastric administration at a single dose of 3, 6 and 12 mgV/kg was 28.1%, 33.7% and 21.4%, respectively. The presence of the peak vanadium level in the plasma was not coincident with that of the maximum effect of lowering plasma glucose levels. In conclusion, at the present dosing levels and administration routes, BMOV was effective in lowering plasma glucose levels in diabetic rats. BMOV has a promising outlook as an oral glucose-lowering drug.
Collapse
Affiliation(s)
- Shuang-Qing Zhang
- School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Xu-Ying Zhong
- School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Guo-Hua Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wan-Liang Lu
- School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Qiang Zhang
- School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
9
|
Laizé V, Tiago DM, Aureliano M, Cancela ML. New insights into mineralogenic effects of vanadate. Cell Mol Life Sci 2009; 66:3831-3836. [PMID: 19760363 PMCID: PMC11115574 DOI: 10.1007/s00018-009-0137-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/04/2009] [Accepted: 08/18/2009] [Indexed: 02/07/2023]
Affiliation(s)
- Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
10
|
Butenko N, Tomaz AI, Nouri O, Escribano E, Moreno V, Gama S, Ribeiro V, Telo JP, Pesssoa JC, Cavaco I. DNA cleavage activity of VIVO(acac)2 and derivatives. J Inorg Biochem 2009; 103:622-32. [DOI: 10.1016/j.jinorgbio.2009.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 01/02/2009] [Accepted: 01/07/2009] [Indexed: 12/26/2022]
|
11
|
Sheela A, Roopan SM, Vijayaraghavan R. New diketone based vanadium complexes as insulin mimetics. Eur J Med Chem 2008; 43:2206-10. [DOI: 10.1016/j.ejmech.2008.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 12/11/2007] [Accepted: 01/10/2008] [Indexed: 11/17/2022]
|
12
|
Zhang SQ, Chen GH, Lu WL, Zhang Q. Effects on the bones of vanadyl acetylacetonate by oral administration: a comparison study in diabetic rats. J Bone Miner Metab 2007; 25:293-301. [PMID: 17704994 DOI: 10.1007/s00774-007-0759-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 03/19/2007] [Indexed: 12/13/2022]
Abstract
Oral delivery, rather than parenteral administration, would be beneficial for treating diabetic mellitus owing to the need for a long-term regimen. The objectives of this study were to evaluate oral delivery tolerance and the effects on the bone of accumulated vanadium following the long-term administration of vanadyl acetylacetonate (VAC). Normal and diabetic rats were intragastrically administered VAC at a dose of 3 mg vanadium/kg body weight once daily for 35 consecutive days. VAC did not cause any obvious signs of diarrhea, any changes in kidney or liver, or deaths in any group. The phosphate levels in the bone were slightly increased, and the calcium levels in the bone were not obviously changed as compared with those of the rat group not receiving VAC. After administration of VAC, the decreased ultimate strength, trabecular thickness, mineral apposition rate, and plasma osteocalcin in diabetic rats were either improved or normalized, but reduced bone mineral density (BMD) in diabetic rats was not improved. None of the parameters evaluated in normal rats were altered. The results indicate that the oral VAC is tolerated and benefits the diabetic osteopathy of rats, but seems not to influence the bone of normal rats. They also suggest that VAC improves diabetes-related bone disorders, primarily by improving the diabetic state.
Collapse
Affiliation(s)
- Shuang-Qing Zhang
- School of Pharmaceutical Sciences and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | | | | | | |
Collapse
|
13
|
Barrio DA, Etcheverry SB. Vanadium and bone development: putative signaling pathwaysThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference. Can J Physiol Pharmacol 2006; 84:677-86. [PMID: 16998531 DOI: 10.1139/y06-022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vanadium is a trace element present in practically all cells in plants and animals. It exerts interesting actions in living systems. At pharmacological doses, vanadium compounds display relevant biological actions such as mimicking insulin and growth factors as well as having osteogenic activity. Some vanadium compounds also show antitumoral properties. The importance of vanadium in bone arises from the studies developed to establish the essentiality of this element in animals and humans. Bone tissue, where the element seems to play an important role, accumulates great amounts of vanadium. This paper reviews the physiology of osteoblasts, the involvement of different growth factors on bone development, and the effects of vanadium derivatives on the skeletal system of animal models and bone-related cells. Two cellular lines are discussed in particular; one derived from a rat osteosarcoma (UMR106) and the other is a nontransformed osteoblast cell line (MC3T3-E1). The effects of different growth factors and their mechanisms of action in these cellular lines are reviewed. These models of osteoblasts are especially useful in understanding the intracellular signaling pathways of vanadium derivatives in hard tissues. Vanadium uses an intricate interplay of intracellular mechanisms to exert different biochemical and pharmacological actions. The effects of vanadium derivatives on some cellular signaling pathways related to insulin are compiled in this review. The comprehension of these intracellular signaling pathways may facilitate the design of vanadium compounds with promising therapeutic applications as well as the understanding of secondary side effects derived from the use of vanadium as a therapeutic agent.
Collapse
Affiliation(s)
- D A Barrio
- Cátedra de Bioquímica Patológica, Facultad de Ciencias Exactas, UNLP, 47 y 115 (1900) La Plata, Argentina
| | | |
Collapse
|
14
|
Aqueous acid–base chemistry involving dioxovanadium(V) complexes of 2,6-pyridinedimethanol, and the X-ray structures of Na[VO2{2,6-(OCH2)2NC5H3}]·4H2O and [1-H-2,6-(HOCH2)2NC5H3]+Cl−. Inorganica Chim Acta 2006. [DOI: 10.1016/j.ica.2005.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|