1
|
Havrylyuk D, Heidary DK, Glazer EC. The Impact of Inorganic Systems and Photoactive Metal Compounds on Cytochrome P450 Enzymes and Metabolism: From Induction to Inhibition. Biomolecules 2024; 14:441. [PMID: 38672458 PMCID: PMC11048704 DOI: 10.3390/biom14040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of inorganic species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions. Intriguingly, while both organometallic and coordination compounds can act as potent CYP inhibitors, there is little evidence for the metabolism of inorganic compounds by CYPs, suggesting a potential alternative approach to evading issues associated with rapid modification and elimination of medically useful compounds.
Collapse
Affiliation(s)
| | - David K. Heidary
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| | - Edith C. Glazer
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| |
Collapse
|
2
|
Lee LCC, Tsang AWY, Liu HW, Lo KKW. Photofunctional Cyclometalated Iridium(III) Polypyridine Complexes Bearing a Perfluorobiphenyl Moiety for Bioconjugation, Bioimaging, and Phototherapeutic Applications. Inorg Chem 2020; 59:14796-14806. [DOI: 10.1021/acs.inorgchem.0c01343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Ada Wun-Yu Tsang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Hua-Wei Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
- Center of Functional Photonics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| |
Collapse
|
3
|
Abstract
![]()
Electron-transfer kinetics have been
measured in four conjugates
of cytochrome P450 with surface-bound Ru-photosensitizers. The conjugates
are constructed with enzymes from Bacillus megaterium (CYP102A1) and Sulfolobus acidocaldarius (CYP119).
A W96 residue lies in the path between Ru and the heme in CYP102A1,
whereas H76 is present at the analogous location in CYP119. Two additional
conjugates have been prepared with (CYP102A1)W96H and (CYP119)H76W
mutant enzymes. Heme oxidation by photochemically generated Ru3+ leads to P450 compound II formation when a tryptophan residue
is in the path between Ru and the heme; no heme oxidation is observed
when histidine occupies this position. The data indicate that heme
oxidation proceeds via two-step tunneling through a tryptophan radical
intermediate. In contrast, heme reduction by photochemically generated
Ru+ proceeds in a single electron tunneling step with closely
similar rate constants for all four conjugates.
Collapse
Affiliation(s)
- Maraia E Ener
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Harry B Gray
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
5
|
Rohan JG, Citron YR, Durrell AC, Cheruzel LE, Gray HB, Grubbs RH, Humayun M, Engisch KL, Pikov V, Chow RH. Light-triggered modulation of cellular electrical activity by ruthenium diimine nanoswitches. ACS Chem Neurosci 2013; 4:585-93. [PMID: 23419103 DOI: 10.1021/cn300213f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ruthenium diimine complexes have previously been used to facilitate light-activated electron transfer in the study of redox metalloproteins. Excitation at 488 nm leads to a photoexcited state, in which the complex can either accept or donate an electron, respectively, in the presence of a soluble sacrificial reductant or oxidant. Here, we describe a novel application of these complexes in mediating light-induced changes in cellular electrical activity. We demonstrate that RubpyC17 ([Ru(bpy)(2)(bpy-C17)](2+), where bpy is 2,2'-bipyridine and bpy-C17 is 2,2'-4-heptadecyl-4'-methyl-bipyridine), readily incorporates into the plasma membrane of cells, as evidenced by membrane-confined luminescence. Excitable cells incubated in RubpyC17 and then illuminated at 488 nm in the presence of the reductant ascorbate undergo membrane depolarization leading to firing of action potentials. In contrast, the same experiment performed with the oxidant ferricyanide, instead of ascorbate, leads to hyperpolarization. These experiments suggest that illumination of membrane-associated RubpyC17 in the presence of ascorbate alters the cell membrane potential by increasing the negative charge on the outer face of the cell membrane capacitor, effectively depolarizing the cell membrane. We rule out two alternative explanations for light-induced membrane potential changes, using patch clamp experiments: (1) light-induced direct interaction of RubpyC17 with ion channels and (2) light-induced membrane perforation. We show that incorporation of RubpyC17 into the plasma membrane of neuroendocrine cells enables light-induced secretion as monitored by amperometry. While the present work is focused on ruthenium diimine complexes, the findings point more generally to broader application of other transition metal complexes to mediate light-induced biological changes.
Collapse
Affiliation(s)
- Joyce G. Rohan
- Department
of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck
School of Medicine, University of Southern California, Los Angeles, California 90089-2821, United States
- Wright State University, Dayton, Ohio 45435, United States
| | - Y. Rose Citron
- Department
of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck
School of Medicine, University of Southern California, Los Angeles, California 90089-2821, United States
| | | | - Lionel E. Cheruzel
- Department of Chemistry, San José State University, San José, California 95192-0101, United States
| | | | | | - Mark Humayun
- Doheny Eye Institute, Keck School
of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | | | - Victor Pikov
- Huntington Medical Research Institute, Pasadena, California 91105, United States
| | - Robert H. Chow
- Department
of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck
School of Medicine, University of Southern California, Los Angeles, California 90089-2821, United States
| |
Collapse
|
6
|
Abstract
We report a quantitative theoretical analysis of long-range electron transfer through sensitizer wires bound in the active-site channel of cytochrome P450cam. Each sensitizer wire consists of a substrate group with high binding affinity for the enzyme active site connected to a ruthenium-diimine through a bridging aliphatic or aromatic chain. Experiments have revealed a dramatic dependence of electron transfer rates on the chemical composition of both the bridging group and the substrate. Using combined molecular dynamics simulations and electronic coupling calculations, we show that electron tunneling through perfluorinated aromatic bridges is promoted by enhanced superexchange coupling through virtual reduced states. In contrast, electron flow through aliphatic bridges occurs by hole-mediated superexchange. We have found that a small number of wire conformations with strong donor-acceptor couplings can account for the observed electron tunneling rates for sensitizer wires terminated with either ethylbenzene or adamantane. In these instances, the rate is dependent not only on electronic coupling of the donor and acceptor but also on the nuclear motion of the sensitizer wire, necessitating the calculation of average rates over the course of a molecular dynamics simulation. These calculations along with related recent findings have made it possible to analyze the results of many other sensitizer-wire experiments that in turn point to new directions in our attempts to observe reactive intermediates in the catalytic cycles of P450 and other heme enzymes.
Collapse
|
7
|
Gibson EA, Duhme-Klair AK, Perutz RN. Design and synthesis of water soluble (metallo)porphyrins with pendant arms: studies of binding to xanthine oxidase. NEW J CHEM 2010. [DOI: 10.1039/b9nj00736a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|