1
|
Becceneri AB, Martin MT, Graminha AE, Cominetti MR, Ford PC, Santana da Silva R. The effect of light irradiation on a nitro-ruthenium porphyrin complex in the induced death of lung cancer cells in two- and three-dimensional cultures: Insights into the effect of nitric oxide. Dalton Trans 2024; 53:11264-11275. [PMID: 38695514 DOI: 10.1039/d4dt00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Efforts to find compounds selectively affecting cancer cells while sparing normal ones have continued to grow. Nitric oxide (NO) is critical in physiology and pathology, including cancer. It influences cellular processes like proliferation, apoptosis, and angiogenesis. The intricate interaction of NO with cancer cells offers innovative treatment possibilities, but its effects can vary by concentration and site. Ruthenium complexes capable of releasing NO upon stimulation show for this purpose. These versatile compounds can also enhance photodynamic therapy (PDT), a light-activated approach, which induces cellular damage. Ruthenium-based photosensitizers (PSs), delivering NO and producing reactive oxygen species (ROS), offer a novel strategy for improved cancer treatments. In this study, a nitro-ruthenium porphyrin conjugate: {TPyP[Ru(NO2)(bpy)2]4}(PF6)4, designated RuNO2TPyP, which releases NO upon irradiation, was investigated for its effects on lung cells (non-tumor MRC-5 and tumor A549) in 2D and 3D cell cultures. The findings suggest that this complex has potential for PDT treatment in lung cancer, as it exhibits photocytotoxicity at low concentrations without causing cytotoxicity to normal lung cells. Moreover, treatment of cells with RuNO2TPyP followed by light irradiation (4 J cm-2) can induce apoptosis, generate ROS, promote intracellular NO formation, and has anti-migratory effects. Additionally, the complex can modify tumor cell structures and induce photocytotoxicity and apoptosis in a 3D culture. These outcomes are attributed to the internalization of the complex and its subsequent activation upon light irradiation, resulting in NO release and singlet oxygen production.
Collapse
Affiliation(s)
- Amanda Blanque Becceneri
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Matheus Torelli Martin
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Angelica Ellen Graminha
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
- Institute of Chemistry, São Paulo State University, Av. Prof. Francisco Degni, 55, 14800-900, Araraquara, São Paulo, Brazil
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, Rod. Washington Luís, Km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110-9510, USA
| | - Roberto Santana da Silva
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110-9510, USA
| |
Collapse
|
2
|
Bessas NC, Christine de Souza Arantes E, Cassani NM, Aquino Ruiz UE, Santos IA, Silva Martins DO, Costa Oliveira AL, Antoniucci GA, de Oliveira AHC, DeFreitas-Silva G, Gomes Jardim AC, Galvão de Lima R. Influence of diimine bidentate ligand in the nitrosyl and nitro terpyridine ruthenium complex on the HSA/DNA interaction and antiviral activity. Nitric Oxide 2024; 147:26-41. [PMID: 38614230 DOI: 10.1016/j.niox.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/05/2023] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.
Collapse
Affiliation(s)
- Naiara Cristina Bessas
- Instituto de Química, Universidade Federal de Uberlândia, Avenida João Naves de Avila, 2121, 38400-902, Uberlândia, MG, Brazil
| | | | - Natasha Marques Cassani
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Uriel Enrique Aquino Ruiz
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Igor Andrade Santos
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Daniel Oliveira Silva Martins
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil; Instituto de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, 1600, 38304-402, Tupã, Ituiutaba, MG, Brazil
| | - Ana Laura Costa Oliveira
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Giovanna André Antoniucci
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Arthur Henrique Cavalcante de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Gilson DeFreitas-Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Renata Galvão de Lima
- Instituto de Química, Universidade Federal de Uberlândia, Avenida João Naves de Avila, 2121, 38400-902, Uberlândia, MG, Brazil; Instituto de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade Federal de Uberlândia, Rua Vinte, 1600, 38304-402, Tupã, Ituiutaba, MG, Brazil.
| |
Collapse
|
3
|
Gul A, Ahmad M, Ullah R, Ullah R, Kang Y, Liao W. Systematic review on antibacterial photodynamic therapeutic effects of transition metals ruthenium and iridium complexes. J Inorg Biochem 2024; 255:112523. [PMID: 38489864 DOI: 10.1016/j.jinorgbio.2024.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
The prevalence of antibiotic-resistant pathogenic bacteria poses a significant threat to public health and ranks among the principal causes of morbidity and mortality worldwide. Antimicrobial photodynamic therapy is an emerging therapeutic technique that has excellent potential to embark upon antibiotic resistance problems. The efficacy of this therapy hinges on the careful selection of suitable photosensitizers (PSs). Transition metal complexes, such as Ruthenium (Ru) and Iridium (Ir), are highly suitable for use as PSs because of their surface plasmonic resonance, crystal structure, optical characteristics, and photonics. These metals belong to the platinum family and exhibit similar chemical behavior due to their partially filled d-shells. Ruthenium and Iridium-based complexes generate reactive oxygen species (ROS), which interact with proteins and DNA to induce cell death. As photodynamic therapeutic agents, these complexes have been widely studied for their efficacy against cancer cells, but their potential for antibacterial activity remains largely unexplored. Our study focuses on exploring the antibacterial photodynamic effect of Ruthenium and Iridium-based complexes against both Gram-positive and Gram-negative bacteria. We aim to provide a comprehensive overview of various types of research in this area, including the structures, synthesis methods, and antibacterial photodynamic applications of these complexes. Our findings will provide valuable insights into the design, development, and modification of PSs to enhance their photodynamic therapeutic effect on bacteria, along with a clear understanding of their mechanism of action.
Collapse
Affiliation(s)
- Anadil Gul
- College of Applied Sciences, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Pingshan District, Shenzhen 518118, China
| | - Munir Ahmad
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Raza Ullah
- College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Rizwan Ullah
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Kang
- College of Applied Sciences, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Pingshan District, Shenzhen 518118, China.
| | - Wenchao Liao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Pingshan District, Shenzhen 518118, China.
| |
Collapse
|
4
|
Giles GI, Erickson JR, Bussey CT. Photoactivation of tDodSNO induces localized vasodilation in rats: Metabolically stable S-nitrosothiols can act as targeted nitric oxide donors in vivo. Nitric Oxide 2022; 129:53-62. [DOI: 10.1016/j.niox.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
5
|
|
6
|
Mechanistic insight into photoactivation of small inorganic molecules from the biomedical applications perspectives. BIOMEDICAL APPLICATIONS OF INORGANIC PHOTOCHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Guadalupe Hernández J, Thangarasu P. A critical evaluation of [ML(ONO)]+ (M = Fe, Ru, Os) as nitric oxide precursor influenced by spin multiplicity and geometrical parameters (M-O-NO and MO-N-O) for the NO release: A theoretical study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Mazurek M, Rola R. The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 2021; 150:105172. [PMID: 34461111 DOI: 10.1016/j.neuint.2021.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Glial tumors are the most common intracranial malignancies. Unfortunately, despite such a high prevalence, patients' prognosis is usually poor. It is related to the high invasiveness, tendency to relapse and the resistance of tumors to traditional methods of treatment. An important link in the aspect of these issues may be nitric oxide (NO) metabolism. It is a very complex mechanism with multidirectional effects on the neoplastic process. Depending on the concentration axis, it can both exert pro-tumor action as well as contribute to the inhibition of tumorigenesis. The latest observations show that the control of its metabolism can be very helpful in the development of new methods of treating gliomas, as well as in increasing the effectiveness of the agents currently used. The influence of nitric oxide and nitric oxide synthase (NOS) activity on glioma stem cells seem to be of particular importance. The use of specific inhibitors may allow the reduction of tumor growth and its tendency to relapse. Another important feature of GSCs is their conditioning of glioma resistance to traditional forms of treatment. Recent studies have shown that modulation of NO metabolism can suppress this effect, preventing the induction of radio and chemoresistance. Moreover, nitric oxide is involved in the regulation of a number of immune mechanisms. Adequate modulation of its metabolism may contribute to the induction of an anti-tumor response in the patients' immune system.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland.
| | - Radosław Rola
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland
| |
Collapse
|
9
|
Understanding of [RuL(ONO)] n+ acting as nitric oxide precursor, a theoretical study of ruthenium complexes of 1,4,8,11-tetraazacyclo- tetradecane having different substituents: How spin multiplicity influences bond angle and bond lengths (Ru-O-NO) in releasing of NO. J Inorg Biochem 2021; 218:111406. [PMID: 33773324 DOI: 10.1016/j.jinorgbio.2021.111406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022]
Abstract
Generation of nitric oxide has been a great interest in cell biology as it involves a wide range of physiological functions including the blood pressure control; thus the exploitation of ruthenium chemistry has been motivated in biochemical and clinical points of view. Herein, the structural and electronic properties of ruthenium(II) complexes of 1,4,8,11-tetraazacyclotetradecane containing pyridyl, imidazole and benzimidazole (L1, L2, L3) were analyzed theoretically in the context of how spin multiplicity plays a crucial role influencing the NO release from the LRu-ONO moiety. The results show that β-cleavage of nitrito in the complex motivates the release of NO as it depends highly on total spin multiplicity of metal ion altering significantly the geometrical parameters; particularly, a decrease of bond length of Ru-ONO is highly associated with an increase of RuO-NO bond distance that correlates with the decrease of the Ru-O-NO bond angle ultimately leading to the release of NO; apparently, the bending nature of Ru-O-NO defines its release from the complex. This is consistent with orbital energy (dx2-y2) where the stabilization of axial Ru-O bond in the complex was observed, and proved by molecular orbital studies. In the excitation of the complex (singlet to triplet or singlet to quintet), the NO release has been facilitated, agreeing with the Gibbs free energy data where a lower energy for NO release was obtained compared to other types of excitations. In the calculated electronic spectra, a visible broad band with relatively high intensity for [RuL1ONO]+ was observed, agreeing approximately with reported experimental results.
Collapse
|
10
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
11
|
La Rosa M, Payne EH, Credi A. Semiconductor Quantum Dots as Components of Photoactive Supramolecular Architectures. ChemistryOpen 2020; 9:200-213. [PMID: 32055433 PMCID: PMC7008307 DOI: 10.1002/open.201900336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/08/2020] [Indexed: 11/10/2022] Open
Abstract
Luminescent quantum dots (QDs) are colloidal semiconductor nanocrystals consisting of an inorganic core covered by a molecular layer of organic surfactants. Although QDs have been known for more than thirty years, they are still attracting the interest of researchers because of their unique size-tunable optical and electrical properties arising from quantum confinement. Moreover, the controlled decoration of the QD surface with suitable molecular species enables the rational design of inorganic-organic multicomponent architectures that can show a vast array of functionalities. This minireview highlights the recent progress in the use of surface-modified QDs - in particular, those based on cadmium chalcogenides - as supramolecular platforms for light-related applications such as optical sensing, triplet photosensitization, photocatalysis and phototherapy.
Collapse
Affiliation(s)
- Marcello La Rosa
- CLAN-Center for Light Activated Nanostructures Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, ViaGobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Emily H. Payne
- CLAN-Center for Light Activated Nanostructures Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, ViaGobetti 10140129BolognaItaly
- EaStChem School of ChemistryThe University of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, ViaGobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaViale Risorgimento 440136BolognaItaly
| |
Collapse
|
12
|
Negri LB, Martins TJ, da Silva RS, Hamblin MR. Photobiomodulation combined with photodynamic therapy using ruthenium phthalocyanine complexes in A375 melanoma cells: Effects of nitric oxide generation and ATP production. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111564. [PMID: 31382090 DOI: 10.1016/j.jphotobiol.2019.111564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/03/2019] [Accepted: 07/20/2019] [Indexed: 01/09/2023]
Abstract
Light irradiation has been used in clinical therapy for several decades. In this context, photobiomodulation (PBM) modulates signaling pathways via ROS, ATP, Ca2+, while photodynamic therapy (PDT) generates reactive oxygen species by excitation of a photosensitizer. NO generation could be an important tool when combined with both kinds of light therapy. By using a metal-based compound, we found that PBM combined with PDT could be a beneficial cancer treatment option. We used two types of ruthenium compounds, ([Ru(Pc)], Pc = phthalocyanine) and trans-[Ru(NO)(NO2)(Pc)]. The UV-vis spectra of both complexes displayed a band in the 660 nm region. In the case of 0.5 μM trans-[Ru(NO)(NO2)(Pc)], light irradiation at the Q-band reduced the percentage of viable human melanoma (A375) cells to around 50% as compared to [Ru(Pc)]. We hypothesized that these results were due to a synergistic effect between singlet oxygen and nitric oxide. Similar experiments performed with PDT (660 nm) combined with PBM (850 nm) induced more photocytotoxicity using both [Ru(Pc)] and trans-[Ru(NO)(NO2)(Pc)]. This was interpreted as PBM increasing cell metabolism (ATP production) and the consequent higher uptake of the ruthenium phthalocyanine compounds and more efficient apoptosis. The use of metal-based photosensitizers combined with light therapy may represent an advance in the field of photodynamic therapy.
Collapse
Affiliation(s)
- Laísa Bonafim Negri
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, Avenida do Cafe s/n, Ribeirão Preto, SP, Brazil
| | - Tassia Joi Martins
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberto Santana da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, Avenida do Cafe s/n, Ribeirão Preto, SP, Brazil; Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Mir JM, Malik BA, Maurya RC. Nitric oxide-releasing molecules at the interface of inorganic chemistry and biology: a concise overview. REV INORG CHEM 2019. [DOI: 10.1515/revic-2018-0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThe useful aspects of nitric oxide (NO) are nowadays widely known. Due to the need for this molecule in the maintenance of homeostasis, NO-releasing compounds are tested every year to optimize its levels in a patient suffering from low NO production. This manuscript is an update of some important historical concerns about nitrosyl complexes having the ability to act as NO-releasing compounds under the influence of different chemically modified environments. At present, the search for efficient and less harmful NO-releasing molecules at desirable targets and concentrations has gained considerable momentum in nitrosyl chemistry. Iron, ruthenium, and manganese nitrosyls have been investigated elitely to disentangle their electronic transition (excitation) under visible light to act as NO donors without harming the healthy cells of a target. There is much evidence supporting the increase of NO lability if amino acids are used as complexing ligands, the design of a reduction center close to an NO grouping, and the development of porphyrin system-based nitrosyl complexes. From the overall survey, it may be concluded that the desirable properties of such scaffolds need to be evaluated further to complement the biological milieu.
Collapse
Affiliation(s)
- Jan Mohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of Post Graduate Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India
- Department of Chemistry, Islamic University of Science and Technology, Awantipora 192322, Jammu and Kashmir
| | - Bashir Ahmad Malik
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of Post Graduate Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India
- Department of Chemistry, Islamic University of Science and Technology, Awantipora 192322, Jammu and Kashmir
| | - Ram Charitra Maurya
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of Post Graduate Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India
| |
Collapse
|
14
|
Rapozzi V, D’Este F, Xodo LE. Molecular pathways in cancer response to photodynamic therapy. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This minireview describes the complexity of the molecular mechanisms involved in the tumor response to photodynamic treatment (PDT). Different aspects of reactive oxygen (ROS) and nitrogen species (RNS) induced by PDT will be examined. In particular, we will discuss the effect of ROS and RNS on cell compartments and the main mechanisms of cell death induced by the treatment. Moreover, we will also examine host defense mechanisms as well as resistance to PDT.
Collapse
Affiliation(s)
- Valentina Rapozzi
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| | - Francesca D’Este
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| | - Luigi E. Xodo
- Department of Medicine, University of Udine, P.le Kolbe 4, Udine, 33100, Italy
| |
Collapse
|
15
|
Dos Santos JS, Ramos LC, Ferreira LP, Campo VL, de Rezende LCD, da Silva Emery F, Santana da Silva R. Cytotoxicity, cellular uptake, and subcellular localization of a nitrogen oxide and aminopropyl-β-lactose derivative ruthenium complex used as nitric oxide delivery agent. Nitric Oxide 2019; 86:38-47. [PMID: 30790696 DOI: 10.1016/j.niox.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022]
Abstract
This work investigates how the luminescent ruthenium-nitrite complexes cis-[Ru(py-bodipy)(dcbpy)2(NO2)](PF6) (I) and cis-[Ru(py-bodipy)(dcbpy-aminopropyl-β-lactose)2(NO2)](PF6) (II) behave toward the melanoma cancer cell line B16F10. The chemical structure and purity of the synthesized complexes were analyzed by UV-Visible and FTIR spectroscopy, MALDI, HPLC, and 1H NMR. Spectrofluorescence helped to determine the fluorescence quantum yields and lifetimes of each of these complexes. In vitro MTT cell viability assay on B16F10 cancer cells revealed that the complexes possibly have a tumoricidal role. The metal-nitrite complexes evidenced the dichotomous NO nature: at high concentration, NO exerted a tumoricidal effect, whereas cancer cells grew at low NO concentration. Flow cytometry or fluorescence microscopy aided cellular uptake calculation. Cell staining followed by fluorescence microscopy associated with organelle markers such as DAPI and Rhodamine 123 detected preferential intracellular localization of the ruthenium-nitrite py-bodipy and aminopropyl lactose derivative ruthenium complex in mitochondria. Thus, the cytotoxicity of compounds (I) and (II) against B16F10 cancer cell line show concentration-dependent results. The present studies suggest that nitric oxide ruthenium derivative compounds could be new potential chemotherapeutic agents against cytotoxic cells.
Collapse
Affiliation(s)
- Joicy Santamalvina Dos Santos
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Prof. Zeferino Vaz s/n, CEP, 14040-903, Ribeirão Preto, SP, Brazil; Departamento de Química Geral e Inorgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Geremoabo, 147, Campus Universitário de Ondina, C.E.P. 40.170-115, Salvador, BA, Brazil
| | - Loyanne C Ramos
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Prof. Zeferino Vaz s/n, CEP, 14040-903, Ribeirão Preto, SP, Brazil
| | - Lucimara P Ferreira
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP, 14040-901, Ribeirão Preto, SP, Brazil
| | - Vanessa Leira Campo
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Prof. Zeferino Vaz s/n, CEP, 14040-903, Ribeirão Preto, SP, Brazil; Barão de Mauá University Centre, 423 Ramos de Azevedo Street, Jardim Paulista, CEP 14090-180, Ribeirão Preto, SP, Brazil
| | - Lucas C D de Rezende
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Prof. Zeferino Vaz s/n, CEP, 14040-903, Ribeirão Preto, SP, Brazil
| | - Flávio da Silva Emery
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Prof. Zeferino Vaz s/n, CEP, 14040-903, Ribeirão Preto, SP, Brazil
| | - Roberto Santana da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Prof. Zeferino Vaz s/n, CEP, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
A gentle introduction to gasotransmitters with special reference to nitric oxide: biological and chemical implications. REV INORG CHEM 2018. [DOI: 10.1515/revic-2018-0011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractNitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are gaseous molecules of major impact in biology. Despite their toxicity, these molecules have profound effects on mammalian physiology and major implications in therapeutics. At tiny concentrations in human biology, they play key signaling and regulatory functions and hence are now labeled as “gasotransmitters.” In this literature survey, an introduction to gasotransmitters in relevance with NO, CO and H2S has been primarily focused. A special attention has been given to the conjoint physiological, pathophysiological and therapeutic aspects of NO in this work. In addition to the aforementioned elements of the investigation being reported, this report gives a detailed account of some of the recent advancements covering the NO release from both the nitro as well as nitroso compounds. The importance of the metallic center on the eve of producing the reduction center on NO and to develop photolabile properties have been elaborated within the effect of a few examples of metallic centers. Also, theoretical investigations that have been reported in the recent past and some other current theories pertaining to NO chemistry have been enlightened in this review. From the overall study, it is eminent that a number of facts are yet to be explored in context with NO for deeper mechanistic insights, model design for these molecules, other key roles and the search to find the best fit formalism in theoretical chemistry.
Collapse
|
17
|
Fraix A, Sortino S. Combination of PDT photosensitizers with NO photodononors. Photochem Photobiol Sci 2018; 17:1709-1727. [PMID: 30141820 DOI: 10.1039/c8pp00272j] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Combination of photodynamic therapy (PDT) with other treatment modalities is emerging as one of the most suitable strategies to increase the effectiveness of therapeutic action on cancer and bacterial diseases and to minimize side effects. This approach aims at exploiting the additive/synergistic effects arising from multiple therapeutic species acting on different mechanistic pathways. The coupling of PDT with photocontrolled release of nitric oxide (NO) through the appropriate assembly of PDT photosensitizers (PSs) and NO photodonors (NOPDs) may open up intriguing avenues towards new and still underexplored multimodal therapies not based on "conventional" drugs but entirely controlled by light stimuli. In this contribution, we present an overview of the most recent advances in this field, illustrating several strategies to assemble PSs and NOPDs allowing them to operate independently without reciprocal interferences and describing the potential applications with particular emphasis on their impact in anticancer and antibacterial research.
Collapse
Affiliation(s)
- Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, I-95125, Catania, Italy.
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, I-95125, Catania, Italy.
| |
Collapse
|
18
|
Crisalli MA, Franco LP, Silva BR, Holanda AKM, Bendhack LM, Da Silva RS, Ford PC. Nitric oxide release from a photoactive water-soluble ruthenium nitrosyl. Biological effects. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1469129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Meredith A. Crisalli
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA
| | - Lilian P. Franco
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Bruno R. Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alda K. M. Holanda
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará Cx., Fortaleza, Brazil
| | - Lusiane M. Bendhack
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Roberto S. Da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA
| |
Collapse
|
19
|
Marker SC, MacMillan SN, Zipfel WR, Li Z, Ford PC, Wilson JJ. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble Phosphines. Inorg Chem 2018; 57:1311-1331. [PMID: 29323880 PMCID: PMC8117114 DOI: 10.1021/acs.inorgchem.7b02747] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fifteen water-soluble rhenium compounds of the general formula [Re(CO)3(NN)(PR3)]+, where NN is a diimine ligand and PR3 is 1,3,5-triaza-7-phosphaadamantane (PTA), tris(hydroxymethyl)phosphine (THP), or 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA), were synthesized and characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography. The complexes bearing the THP and DAPTA ligands exhibit triplet-based luminescence in air-equilibrated aqueous solutions with quantum yields ranging from 3.4 to 11.5%. Furthermore, the THP and DAPTA complexes undergo photosubstitution of a CO ligand upon irradiation with 365 nm light with quantum yields ranging from 1.1 to 5.5% and sensitize the formation of 1O2 with quantum yields as high as 70%. In contrast, all of the complexes bearing the PTA ligand are nonemissive and do not undergo photosubstitution upon irradiation with 365 nm light. These compounds were evaluated as photoactivated anticancer agents in human cervical (HeLa), ovarian (A2780), and cisplatin-resistant ovarian (A2780CP70) cancer cell lines. All of the complexes bearing THP and DAPTA exhibited a cytotoxic response upon irradiation with minimal toxicity in the absence of light. Notably, the complex with DAPTA and 1,10-phenanthroline gave rise to an IC50 value of 6 μM in HeLa cells upon irradiation, rendering it the most phototoxic compound in this library. The nature of the photoinduced cytotoxicity of this compound was explored in further detail. These data indicate that the phototoxic response may result from the release of both CO and the rhenium-containing photoproduct, as well as the production of 1O2.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Warren R. Zipfel
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhi Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Ciccone V, Monti M, Monzani E, Casella L, Morbidelli L. The metal-nonoate Ni(SalPipNONO) inhibits in vitro tumor growth, invasiveness and angiogenesis. Oncotarget 2018; 9:13353-13365. [PMID: 29568362 PMCID: PMC5862583 DOI: 10.18632/oncotarget.24350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) exerts conflicting effect on tumor growth and progression, depending on its concentration. We aimed to characterize the anti-cancer activity of a new NO donor, Ni(SalPipNONO) belonging to the class of metal-nonoates, in epithelial derived tumor cells, finally exploring its antiangiogenic properties. Tumor epithelial cells were screened to evaluate the cytotoxic effect of Ni(SalPipNONO), which was able to inhibit cell proliferation in a dose dependent manner, being more effective than the commercial DETA/NO. The human lung carcinoma cells A549 were chosen as model to study the anti-cancer mechanisms exerted by the compound. In these cells, Ni(SalPipNONO) inhibited clonogenicity and cell invasion, while promoting apoptosis. The antitumor activity was partly due to NO-cGMP dependent pathway, contributing to reduced cell number and apoptosis, and partly to the salicylaldehyde moiety and reactive oxygen species (ROS) activated ERK1/2 signaling converging on p53 dependent caspase-3 cleavage. An additional contribution by downstream cycloxygenase-2 (COX-2) derived cyclopentenones may explain the tumor inhibitory activities. As NO has been described to affect tumor angiogenesis, we checked this activity both on tumor and endothelial cell co-cultures and in Matrigel in vivo assay. Our data document that Ni(SalPipNONO) was able to both reduce angiogenic factor expression by tumor cells acting on hypoxia inducible factor-1α (HIF-1 α) level, and endothelial cell functions related to angiogenesis. Collectively, these data confirm the potential use of NO donors and in particular Ni(SalPipNONO) acting through multiple mechanisms, as an agent to be further developed to be used alone or in combination with conventional therapy.
Collapse
Affiliation(s)
- Valerio Ciccone
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Martina Monti
- Department of Molecular Medicine and Development, University of Siena, Siena, Italy.,Noxamet Ltd, Milan, Italy
| | - Enrico Monzani
- Noxamet Ltd, Milan, Italy.,Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Casella
- Noxamet Ltd, Milan, Italy.,Department of Chemistry, University of Pavia, Pavia, Italy
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Siena, Italy.,Noxamet Ltd, Milan, Italy
| |
Collapse
|
21
|
Mir JM, Jain N, Jaget PS, Maurya RC. Density functionalized [Ru II(NO)(Salen)(Cl)] complex: Computational photodynamics and in vitro anticancer facets. Photodiagnosis Photodyn Ther 2017; 19:363-374. [PMID: 28743589 DOI: 10.1016/j.pdpdt.2017.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 11/25/2022]
Abstract
Photodynamic therapy (PDT) is a treatment that uses photosensitizing agents to kill cancer cells. Scientific community has been eager for decades to design an efficient PDT drug. Under such purview, the current report deals with the computational photodynamic behavior of ruthenium(II) nitrosyl complex containing N, N'-salicyldehyde-ethylenediimine (SalenH2), the synthesis and X-ray crystallography of which is already known [Ref. 38,39]. Gaussian 09W software package was employed to carry out the density functional (DFT) studies. DFT calculations with Becke-3-Lee-Yang-Parr (B3LYP)/Los Alamos National Laboratory 2 Double Z (LanL2DZ) specified for Ru atom and B3LYP/6-31G(d,p) combination for all other atoms were used using effective core potential method. Both, the ground and excited states of the complex were evolved. Some known photosensitizers were compared with the target complex. Pthalocyanine and porphyrin derivatives were the compounds selected for the respective comparative study. It is suggested that effective photoactivity was found due to the presence of ruthenium core in the model complex. In addition to the evaluation of theoretical aspects in vitro anticancer aspects against COLO-205 human cancer cells have also been carried out with regard to the complex. More emphasis was laid to extrapolate DFT to depict the chemical power of the target compound to release nitric oxide. A promising visible light triggered nitric oxide releasing power of the compound has been inferred. In vitro antiproliferative studies of [RuCl3(PPh3)3] and [Ru(NO)(Salen)(Cl)] have revealed the model complex as an excellent anticancer agent. From IC50 values of 40.031mg/mL in former and of 9.74mg/mL in latter, it is established that latter bears more anticancer potentiality. From overall study the DFT based structural elucidation and the efficiency of NO, Ru and Salen co-ligands has shown promising drug delivery property and a good candidacy for both chemotherapy as well as light therapy.
Collapse
Affiliation(s)
- Jan Mohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy, R.D. University, Jabalpur, M.P., India.
| | - N Jain
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy, R.D. University, Jabalpur, M.P., India
| | - P S Jaget
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy, R.D. University, Jabalpur, M.P., India
| | - R C Maurya
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy, R.D. University, Jabalpur, M.P., India
| |
Collapse
|
22
|
de Lima RG, Tedesco AC, da Silva RS, Lawrence MJ. Ultradeformable liposome loaded with zinc phthalocyanine and [Ru(NH.NHq)(tpy)NO] 3+ for photodynamic therapy by topical application. Photodiagnosis Photodyn Ther 2017; 19:184-193. [PMID: 28578126 DOI: 10.1016/j.pdpdt.2017.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/16/2017] [Accepted: 05/18/2017] [Indexed: 01/25/2023]
Abstract
Ultradeformable liposomes (UDLs) as a drug delivery system (DDS), prepared from the unsaturated phospholipid, dioleylphosphocholine (DOPC), and containing the non-ionic surfactant Tween 20 as edge activator, have been explored as topical vehicles for zinc phthalocyanine (ZnPc) and the nitrosyl ruthenium complex [Ru(NH.NHq)(tpy)NO]3+ (RuNO) as a photosensitizers for co-generation of 1O2 and NO as reactive species, respectively. However, in order to ensure that ZnPc was present in the UDLs in its monomeric form - essential for maximal ZnPc photophysical properties - it was necessary to replace 40wt% of the DOPC with the saturated phospholipid, dimyristoylphosphocholine (DMPC). The resultant ZnPc and complex [Ru(NH.NHq)(tpy)NO]3+ containing UDLs were stable for at least a month when stored at 4°C, six times more elastic/deformable than conventional liposome (c-Ls), i.e. liposome prepared using the same weight ratio of lipids but in the absence of Tween 20, and to significantly enhance the in vitro permeation of ZnPc across fresh pig ear skin. The UDLs DDS incorporating ZnPc and [Ru(NH.NHq)(tpy)NO]3+ were toxic (by the MTT assay) towards B16-F10 melanoma cells when irradiated with visible light at 670nm, the maximum absorption of ZnPc, and at a dose of 3.18J/cm2, but not when applied in the absence of light as expected. Based on these results it is proposed that the novel topical UDLs formulation developed is a suitable delivery vehicle for photodynamic therapy.
Collapse
Affiliation(s)
- Renata Galvão de Lima
- Faculty of Sciences Integrated of Pontal, Federal University of Uberlândia, Brazil; Pharmaceutical Science Division, King's College London, Waterloo Campus, SE1 9NH, London, UK
| | - Antonio Cláudio Tedesco
- Departament of Chemistry, Laboratory of Photobiology and Photomedicine, Center of Nanotechnology and Tissue Engineer, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Margaret Jayne Lawrence
- Pharmaceutical Science Division, King's College London, Waterloo Campus, SE1 9NH, London, UK.
| |
Collapse
|
23
|
Barbosa M, Parra G, Correa R, Sampaio R, Magno L, Silva R, Doriguetto A, Ellena J, Neto NB, Batista A, Gonçalves P. Reactive nitrogen/oxygen species production by nitro/nitrosyl supramolecular ruthenium porphyrin complexes. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Light to Hydrogen: Photocatalytic Hydrogen Generation from Water with Molecularly-Defined Iron Complexes. INORGANICS 2017. [DOI: 10.3390/inorganics5010014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
25
|
Elnaggar MA, Subbiah R, Han DK, Joung YK. Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin Drug Deliv 2017; 14:1341-1353. [PMID: 28117595 DOI: 10.1080/17425247.2017.1285904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahmoud A. Elnaggar
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
26
|
Rapozzi V, Varchi G, Della Pietra E, Ferroni C, Xodo LE. A photodynamic bifunctional conjugate for prostate cancer: an in vitro mechanistic study. Invest New Drugs 2016; 35:115-123. [PMID: 27726093 DOI: 10.1007/s10637-016-0396-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/28/2016] [Indexed: 01/12/2023]
Abstract
Photodynamic therapy (PDT) has drawn considerable attention for its efficacy against certain types of cancers. It shows however limits in the case of deep cancers, favoring tumor recurrence under suboptimal conditions. More insight into the molecular mechanisms of PDT-induced cytotoxicity and cytoprotection is essential to extend and strengthen this therapeutic modality. As PDT induces iNOS/NO in both tumor and microenvironment, we examined the role of nitric oxide (NO) in cytotoxicity and cytoprotection. Our findings show that NO mediates its cellular effects by acting on the NF-κB/YY1/RKIP loop, which controls cell growth and apoptosis. The cytoprotective effect of PDT-induced NO is observed at low NO levels, which activate the pro-survival/anti-apoptotic NF-κB and YY1, while inhibiting the anti-survival/pro-apoptotic and metastasis suppressor RKIP. In contrast, high PDT-induced NO levels inhibit NF-κB and YY1 and induce RKIP, resulting in significant anti-tumor activity. These findings reveal a critical role played by NO in PDT and suggest that the use of bifunctional PDT agents composed of a photosensitizer and a NO-donor could enhance the photo-treatment effect. A successful application of NO in anticancer therapy requires control of its concentration in the target tissue. To address this issue we propose as PDT agent, a bimolecular conjugate called DR2, composed of a photosensitizer (Pheophorbide a) and a non-steroidal anti-androgen molecule capable of releasing NO under the exclusive control of light. The mechanism of action of DR2 in prostate cancer cells is reported and discussed.
Collapse
Affiliation(s)
- Valentina Rapozzi
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy.
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity, Italian National Research Council, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Emilia Della Pietra
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy
| | - Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity, Italian National Research Council, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Luigi E Xodo
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy
| |
Collapse
|
27
|
Ramos LCB, Marchesi MSP, Callejon D, Baruffi MD, Lunardi CN, Slep LD, Bendhack LM, da Silva RS. Enhanced Antitumor Activity against Melanoma Cancer Cells by Nitric Oxide Release and Photosensitized Generation of Singlet Oxygen from Ruthenium Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600217] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Loyanne C. B. Ramos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP; Av. do Café s/n 14040-903 Ribeirão Preto-SP Brazil
| | | | - Daniel Callejon
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP; Av. do Café s/n 14040-903 Ribeirão Preto-SP Brazil
| | - Marcelo Dias Baruffi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP; Av. do Café s/n 14040-903 Ribeirão Preto-SP Brazil
| | - Claure N. Lunardi
- Faculdade de Ceilandia; Universidade de Brasília; Brasilia-DF Brazil
| | - Leonardo D. Slep
- Departamento de Química Inorgánica; Analítica y Química Física and INQUIMAE; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Pabellón 2, Ciudad Universitaria C1428EHA Buenos Aires Argentina
| | - Lusiane M. Bendhack
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP; Av. do Café s/n 14040-903 Ribeirão Preto-SP Brazil
| | - Roberto Santana da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP; Av. do Café s/n 14040-903 Ribeirão Preto-SP Brazil
| |
Collapse
|
28
|
Calì B, Ceolin S, Ceriani F, Bortolozzi M, Agnellini AHR, Zorzi V, Predonzani A, Bronte V, Molon B, Mammano F. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury. Oncotarget 2016; 6:10161-74. [PMID: 25868859 PMCID: PMC4496347 DOI: 10.18632/oncotarget.3553] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/14/2015] [Indexed: 12/02/2022] Open
Abstract
Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding “bystander” cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca2+-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy.
Collapse
Affiliation(s)
- Bianca Calì
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, Padua, Italy
| | - Stefano Ceolin
- University of Padua, Department of Physics and Astronomy, Padua, Italy
| | - Federico Ceriani
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Physics and Astronomy, Padua, Italy
| | - Mario Bortolozzi
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Physics and Astronomy, Padua, Italy
| | - Andrielly H R Agnellini
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, Padua, Italy
| | - Veronica Zorzi
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Physics and Astronomy, Padua, Italy
| | | | - Vincenzo Bronte
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,Verona University Hospital, Department of Pathology and Diagnostics, Immunology Section, Verona, Italy
| | | | - Fabio Mammano
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy.,University of Padua, Department of Physics and Astronomy, Padua, Italy.,Present address: CNR, Institute of Cell Biology and Neurobiology, Monterotondo (RM), Italy
| |
Collapse
|
29
|
Rodrigues FP, Carneiro ZA, Mascharak P, Curti C, da Silva RS. Incorporation of a ruthenium nitrosyl complex into liposomes, the nitric oxide released from these liposomes and HepG2 cell death mechanism. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Knoll JD, Albani BA, Turro C. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation. Acc Chem Res 2015; 48:2280-7. [PMID: 26186416 DOI: 10.1021/acs.accounts.5b00227] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uncovering the factors that govern the electronic structure of Ru(II)-polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and (1)O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field ((3)LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer ((3)MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2](2+) (bpy = 2,2'-bipyridine; L = CH3CN or py). This suggests that population of the (3)LF state proceeds from the vibrationally excited (3)MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the (3)LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)](2+) complexes (tpy = 2,2':6',2″-terpyridine; NN = bpy, 6,6'-dimethyl-2,2'-bipyridine (Me2bpy), 2,2'-biquinoline (biq)) increases by 2-3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the (3)LF state within 3-7 ps when NN is bulky, and density functional theory calculations support stabilized (3)LF states. Dual activity via ligand dissociation and (1)O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2](2+) (dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) and [Ru(tpy)(Me2dppn)(py)](2+) (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) introduces low-lying, long-lived dppn/Me2dppn (3)ππ* excited states that generate (1)O2. Similar to [Ru(bpy)2(CH3CN)2](2+), photodissociation of CH3CN occurs upon irradiation of [Ru(bpy)(dppn)(CH3CN)2](2+), although with lower efficiency because of the presence of the (3)ππ* state. The steric bulk in [Ru(tpy)(Me2dppn)(py)](2+) is critical in facilitating the photoinduced py dissociation, as the analogous complex [Ru(tpy)(dppn)(py)](2+) produces (1)O2 with near-unit efficiency. The ability to tune the relative energies of the excited states provides a means to design potentially more active drugs for photochemotherapy because the photorelease of drugs can be coupled to the therapeutic action of reactive oxygen species, effecting cell death via two different mechanisms. The lessons learned about tuning of the excited-state properties can be applied to the use of Ru(II)-polypyridyl compounds in a variety of applications, such as solar energy conversion, sensors and switches, and molecular machines.
Collapse
Affiliation(s)
- Jessica D. Knoll
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bryan A. Albani
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
31
|
Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol 2015; 6:311-317. [PMID: 26319434 PMCID: PMC4556768 DOI: 10.1016/j.redox.2015.07.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/08/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy (PDT) against cancer has gained attention due to the successful outcome in some cancers, particularly those on the skin. However, there have been limitations to PDT applications in deep cancers and, occasionally, PDT treatment resulted in tumor recurrence. A better understanding of the underlying molecular mechanisms of PDT-induced cytotoxicity and cytoprotection should facilitate the development of better approaches to inhibit the cytoprotective effects and also augment PDT-mediated cytotoxicity. PDT treatment results in the induction of iNOS/NO in both the tumor and the microenvironment. The role of NO in cytotoxicity and cytoprotection was examined. The findings revealed that NO mediates its effects by interfering with a dysregulated pro-survival/anti-apoptotic NF-κB/Snail/YY1/RKIP loop which is often expressed in cancer cells. The cytoprotective effect of PDT-induced NO was the result of low levels of NO that activates the pro-survival/anti-apoptotic NF-κB, Snail, and YY1 and inhibits the anti-survival/pro-apoptotic and metastasis suppressor RKIP. In contrast, PDT-induced high levels of NO result in the inhibition of NF-kB, Snail, and YY1 and the induction of RKIP, all of which result in significant anti-tumor cytotoxicity. The direct role of PDT-induced NO effects was corroborated by the use of the NO inhibitor, l-NAME, which reversed the PDT-mediated cytotoxic and cytoprotective effects. In addition, the combination of the NO donor, DETANONOate, and PDT potentiated the PDT-mediated cytotoxic effects. These findings revealed a new mechanism of PDT-induced NO effects and suggested the potential therapeutic application of the combination of NO donors/iNOS inducers and PDT in the treatment of various cancers. In addition, the study suggested that the combination of PDT with subtoxic cytotoxic drugs will result in significant synergy since NO has been shown to be a significant chemo-immunosensitizing agent to apoptosis. PDT-mediated cytotoxic and cytoprotective effects depend also by the induction of NO from tumor. The PDT-induced NO modulates the dysregulated NF-kB/Snail/RKIP loop. The direct role of NO induction by PDT was corroborated by the use of the NO inhibitor, l-NAME. The combination of an NO donor and PDT resulted in a increased cytotoxic effect, in vitro and in vivo. Novel potential therapeutic applications are proposed for the use of PDT combined with NO donors.
Collapse
Affiliation(s)
- Valentina Rapozzi
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Emilia Della Pietra
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Rapozzi V, Ragno D, Guerrini A, Ferroni C, della Pietra E, Cesselli D, Castoria G, Di Donato M, Saracino E, Benfenati V, Varchi G. Androgen Receptor Targeted Conjugate for Bimodal Photodynamic Therapy of Prostate Cancer in Vitro. Bioconjug Chem 2015; 26:1662-71. [PMID: 26108715 DOI: 10.1021/acs.bioconjchem.5b00261] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostate cancer (PC) represents the most common type of cancer among males and is the second leading cause of cancer death in men in Western society. Current options for PC therapy remain unsatisfactory, since they often produce uncomfortable long-term side effects, such as impotence (70%) and incontinence (5-20%) even in the first stages of the disease. Light-triggered therapies, such as photodynamic therapy, have the potential to provide important advances in the treatment of localized and partially metastasized prostate cancer. We have designed a novel molecular conjugate (DR2) constituted of a photosensitizer (pheophorbide a, Pba), connected to a nonsteroidal anti-androgen molecule through a small pegylated linker. This study aims at investigating whether DR2 represents a valuable approach for PC treatment based on light-induced production of single oxygen and nitric oxide (NO) in vitro. Besides being able to efficiently bind the androgen receptor (AR), the 2-trifluoromethylnitrobenzene ring on the DR2 backbone is able to release cytotoxic NO under the exclusive control of light, thus augmenting the general photodynamic effect. Although DR2 is similarly internalized in cells expressing different levels of androgen receptor, the AR ligand prevents its efflux through the ABCG2-pump. In vitro phototoxicity experiments demonstrated the ability of DR2 to kill cancer cells more efficiently than Pba, while no dark toxicity was observed. Overall, the presented approach is very promising for further development of AR-photosensitizer conjugates in the multimodal photodynamic treatment of prostate cancer.
Collapse
Affiliation(s)
- Valentina Rapozzi
- ‡Department of Medical and Biological Sciences University of Udine, Piazzale Kolbe, 4, 33100 Udine, Italy
| | - Daniele Ragno
- ∥Department of Chemistry University of Ferrara, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Andrea Guerrini
- †Institute of the Organic Synthesis and Photoreactivity Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Claudia Ferroni
- †Institute of the Organic Synthesis and Photoreactivity Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Emilia della Pietra
- ‡Department of Medical and Biological Sciences University of Udine, Piazzale Kolbe, 4, 33100 Udine, Italy
| | - Daniela Cesselli
- ‡Department of Medical and Biological Sciences University of Udine, Piazzale Kolbe, 4, 33100 Udine, Italy
| | - Gabriella Castoria
- §Department of Biochemistry, Biophysics and General Pathology - II University of Naples , Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Marzia Di Donato
- §Department of Biochemistry, Biophysics and General Pathology - II University of Naples , Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Emanuela Saracino
- ⊥Institute for the Study of Nanostructured Materials, Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Valentina Benfenati
- †Institute of the Organic Synthesis and Photoreactivity Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Greta Varchi
- †Institute of the Organic Synthesis and Photoreactivity Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| |
Collapse
|
33
|
da Silva RS, de Lima RG, de Paula Machado S. Design, Reactivity, and Biological Activity of Ruthenium Nitrosyl Complexes. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Franco LP, Cicillini SA, Biazzotto JC, Schiavon MA, Mikhailovsky A, Burks P, Garcia J, Ford PC, Silva RSD. Photoreactivity of a Quantum Dot–Ruthenium Nitrosyl Conjugate. J Phys Chem A 2014; 118:12184-91. [DOI: 10.1021/jp5111218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lilian Pereira Franco
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto, University of Sao Paulo, Avenida do Café s/n, 14040-903 Ribeirão Preto, Sao Paulo, Brazil
| | - Simone Aparecida Cicillini
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto, University of Sao Paulo, Avenida do Café s/n, 14040-903 Ribeirão Preto, Sao Paulo, Brazil
| | - Juliana Cristina Biazzotto
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto, University of Sao Paulo, Avenida do Café s/n, 14040-903 Ribeirão Preto, Sao Paulo, Brazil
| | - Marco A. Schiavon
- Departamento
de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio,
74, 36301-160 São
João Del Rei, Minas Gerais, Brazil
| | - Alexander Mikhailovsky
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110-9510, United States
| | - Peter Burks
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110-9510, United States
| | - John Garcia
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110-9510, United States
| | - Peter C. Ford
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110-9510, United States
| | - Roberto Santana da Silva
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto, University of Sao Paulo, Avenida do Café s/n, 14040-903 Ribeirão Preto, Sao Paulo, Brazil
| |
Collapse
|
35
|
Heinrich TA, Tedesco AC, Fukuto JM, da Silva RS. Production of reactive oxygen and nitrogen species by light irradiation of a nitrosyl phthalocyanine ruthenium complex as a strategy for cancer treatment. Dalton Trans 2014; 43:4021-5. [PMID: 24452093 DOI: 10.1039/c3dt52217b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Production of reactive oxygen species has been used in clinical therapy for cancer treatment in a technique known as Photodynamic Therapy (PDT). The success of this therapy depends on oxygen concentration since hypoxia limits the formation of reactive oxygen species with consequent clinical failure of PDT. Herein, a possible synergistic effect between singlet oxygen and nitric oxide (NO) is examined since this scenario may display increased tumoricidal activity. To this end, the trinuclear species [Ru(pc)(pz)2{Ru(bpy)2(NO)}2](PF6)6 (pc = phthalocyanine; pz = pyrazine; bpy = bipyridine) was synthesized to be a combined NO and singlet oxygen photogenerator. Photobiological assays using at 4 × 10(-6) M in the B16F10 cell line result in the decrease of cell viability to 21.78 ± 0.29% of normal under light irradiation at 660 nm. However, in the dark and at the same concentration of compound , viability was 91.82 ± 0.37% of normal. The potential application of a system like in clinical therapy against cancer may be as an upgrade to normal photodynamic therapy.
Collapse
Affiliation(s)
- Tassiele A Heinrich
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | | | | | | |
Collapse
|
36
|
Frei A, Rubbiani R, Tubafard S, Blacque O, Anstaett P, Felgenträger A, Maisch T, Spiccia L, Gasser G. Synthesis, characterization, and biological evaluation of new Ru(II) polypyridyl photosensitizers for photodynamic therapy. J Med Chem 2014; 57:7280-92. [PMID: 25121347 DOI: 10.1021/jm500566f] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two Ru(II) polypyridyl complexes, Ru(DIP)2(bdt) (1) and [Ru(dqpCO2Me)(ptpy)](2+) (2) (DIP = 4,7-diphenyl-1,10-phenanthroline, bdt = 1,2-benzenedithiolate, dqpCO2Me = 4-methylcarboxy-2,6-di(quinolin-8-yl)pyridine), ptpy = 4'-phenyl-2,2':6',2″-terpyridine) have been investigated as photosensitizers (PSs) for photodynamic therapy (PDT). In our experimental settings, the phototoxicity and phototoxic index (PI) of 2 (IC50(light): 25.3 μM, 420 nm, 6.95 J/cm(2); PI >4) and particularly of 1 (IC50(light): 0.62 μM, 420 nm, 6.95 J/cm(2); PI: 80) are considerably superior compared to the two clinically approved PSs porfimer sodium and 5-aminolevulinic acid. Cellular uptake and distribution of these complexes was investigated by confocal microscopy (1) and by inductively coupled plasma mass spectrometry (1 and 2). Their phototoxicity was also determined against the Gram-(+) Staphylococcus aureus and Gram-(-) Escherichia coli for potential antimicrobial PDT (aPDT) applications. Both complexes showed significant aPDT activity (420 nm, 8 J/cm(2)) against Gram-(+) (S. aureus; >6 log10 CFU reduction) and, for 2, also against Gram-(-) E. coli (>4 log10 CFU reduction).
Collapse
Affiliation(s)
- Angelo Frei
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kumari S, Sammut IA, Giles GI. The design of nitric oxide donor drugs: s-nitrosothiol tDodSNO is a superior photoactivated donor in comparison to GSNO and SNAP. Eur J Pharmacol 2014; 737:168-76. [DOI: 10.1016/j.ejphar.2014.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/19/2022]
|
38
|
Ruthenium complexes as NO donors for vascular relaxation induction. Molecules 2014; 19:9628-54. [PMID: 25004072 PMCID: PMC6271244 DOI: 10.3390/molecules19079628] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/09/2014] [Accepted: 06/26/2014] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) donors are substances that can release NO. Vascular relaxation induction is among the several functions of NO, and the administration of NO donors is a pharmacological alternative to treat hypertension. This review will focus on the physicochemical description of ruthenium-derived NO donor complexes that release NO via reduction and light stimulation. In particular, we will discuss the complexes synthesized by our research group over the last ten years, and we will focus on the vasodilation and arterial pressure control elicited by these complexes. Soluble guanylyl cyclase (sGC) and potassium channels are the main targets of the NO species released from the inorganic compounds. We will consider the importance of the chemical structure of the ruthenium complexes and their vascular effects.
Collapse
|
39
|
Nitric oxide photorelease from a trinuclear ruthenium nitrosyl complex and its in vitro cytotoxicity against melanoma cells. J Inorg Biochem 2014; 134:36-8. [DOI: 10.1016/j.jinorgbio.2014.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 11/19/2022]
|
40
|
Timerbaev AR. Recent progress of ICP-MS in the development of metal-based drugs and diagnostic agents. J. ANAL. AT. SPECTROM. 2014; 29:1058-1072. [DOI: 10.1039/c3ja50394a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Critical analysis of current capabilities, limitations, and trends of ICP-MS applied to the development of metal-based medicines is conducted.
Collapse
Affiliation(s)
- Andrei R. Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry
- Russian Academy of Sciences
- Moscow, Russia
| |
Collapse
|
41
|
Andriani KF, Caramori GF, Doro FG, Parreira RLT. Ru–NO and Ru–NO2bonding linkage isomerism in cis-[Ru(NO)(NO)(bpy)2]2+/+complexes – a theoretical insight. Dalton Trans 2014; 43:8792-804. [DOI: 10.1039/c4dt00016a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calculated energy profile (kcal mol−1) for linkage isomers relative to the ground state structure (GS)1aprior the monoelectronic reduction.
Collapse
Affiliation(s)
- Karla Furtado Andriani
- Departamento de Química
- Universidade Federal de Santa Catarina
- Campi Universitário Trindade
- 88040-900 Florianópolis, Brazil
| | - Giovanni Finoto Caramori
- Departamento de Química
- Universidade Federal de Santa Catarina
- Campi Universitário Trindade
- 88040-900 Florianópolis, Brazil
| | - Fábio Gorzoni Doro
- Departamento de Química Geral e Inorgânica
- Universidade Federal da Bahia – UFBA
- Salvador, Brazil
| | | |
Collapse
|
42
|
Wierzchowski M, Sobotta L, Skupin-Mrugalska P, Kruk J, Jusiak W, Yee M, Konopka K, Düzgüneş N, Tykarska E, Gdaniec M, Mielcarek J, Goslinski T. Phthalocyanines functionalized with 2-methyl-5-nitro-1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity. J Inorg Biochem 2013; 127:62-72. [DOI: 10.1016/j.jinorgbio.2013.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 02/09/2023]
|
43
|
Luo SP, Mejía E, Friedrich A, Pazidis A, Junge H, Surkus AE, Jackstell R, Denurra S, Gladiali S, Lochbrunner S, Beller M. Photocatalytic Water Reduction with Copper-Based Photosensitizers: A Noble-Metal-Free System. Angew Chem Int Ed Engl 2012; 52:419-23. [DOI: 10.1002/anie.201205915] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Indexed: 01/21/2023]
|
44
|
Luo SP, Mejía E, Friedrich A, Pazidis A, Junge H, Surkus AE, Jackstell R, Denurra S, Gladiali S, Lochbrunner S, Beller M. Photocatalytic Water Reduction with Copper-Based Photosensitizers: A Noble-Metal-Free System. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205915] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Ostrowski AD, Lin BF, Tirrell MV, Ford PC. Liposome Encapsulation of a Photochemical NO Precursor for Controlled Nitric Oxide Release and Simultaneous Fluorescence Imaging. Mol Pharm 2012; 9:2950-5. [DOI: 10.1021/mp300139y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alexis D. Ostrowski
- Department
of Chemistry and Biochemistry and §Department of Chemical Engineering and Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Brian F. Lin
- Department
of Chemistry and Biochemistry and §Department of Chemical Engineering and Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Matthew V. Tirrell
- Department
of Chemistry and Biochemistry and §Department of Chemical Engineering and Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Peter C. Ford
- Department
of Chemistry and Biochemistry and §Department of Chemical Engineering and Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
46
|
Giles NM, Kumari S, Gang BP, Yuen CWW, Billaud EMF, Giles GI. The molecular design of S-nitrosothiols as photodynamic agents for controlled nitric oxide release. Chem Biol Drug Des 2012; 80:471-8. [PMID: 22642531 DOI: 10.1111/j.1747-0285.2012.01420.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitric oxide is a small messenger molecule utilized by nature in cell signalling and the non-specific immune response. At present, nitric oxide releasing prodrugs cannot be efficiently targeted towards a specific body compartment, which restricts their therapeutic applications. To address this limitation, we have designed two photolabile nitric oxide releasing prodrugs, tert-butyl S-nitrosothiol and tert-dodecane S-nitrosothiol, which are based on the S-nitrosothiol functionality. By modulating the prodrugs' hydrophobicity, we postulated that we could increase their stability within the cell by preventing their interaction with hydrophilic thiols and metal ions; processes that are known to inactivate this prodrug class. Our data demonstrate that these prodrugs have improved nitric oxide release kinetics compared to currently available S-nitrosothiols, as they are highly stable in vitro in the absence of irradiation (t(1/2) > 3 h), while their rate of decomposition can be regulated by controlling the intensity or duration of the photostimulus. Nitric oxide release can readily be achieved using non-laser based light sources, which enabled us to characterize photoactivation as a trigger mechanism for nitric oxide release in A549 lung carcinoma cells. Here we confirmed that irradiation induced highly significant increases in cytotoxicity within a therapeutic drug range (1-100 μm), and the utility of this photoactivation switch opens up avenues for exploring the applications of these prodrugs for chemical biology studies and chemotherapy.
Collapse
Affiliation(s)
- Niroshini M Giles
- Department of Pharmacology and Toxicology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
47
|
Rodrigues FP, Pestana CR, Polizello ACM, Pardo-Andreu GL, Uyemura SA, Santos AC, Alberici LC, da Silva RS, Curti C. Release of NO from a nitrosyl ruthenium complex through oxidation of mitochondrial NADH and effects on mitochondria. Nitric Oxide 2012; 26:174-81. [PMID: 22349020 DOI: 10.1016/j.niox.2012.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/11/2012] [Accepted: 02/12/2012] [Indexed: 01/27/2023]
Abstract
Nitrosyl ruthenium complexes are promising NO donor agents with numerous advantages for the biologic applications of NO. We have characterized the NO release from the nitrosyl ruthenium complex [Ru(NO(2))(bpy)(2)(4-pic)](+) (I) and the reactive oxygen/nitrogen species (ROS/RNS)-mediated NO actions on isolated rat liver mitochondria. The results indicated that oxidation of mitochondrial NADH promotes NO release from (I) in a manner mediated by NO(2) formation (at neutral pH) as in mammalian cells, followed by an oxygen atom transfer mechanism (OAT). The NO released from (I) uncoupled mitochondria at low concentrations/incubation times and inhibited the respiratory chain at high concentrations/incubation times. In the presence of ROS generated by mitochondria NO gave rise to peroxynitrite, which, in turn, inhibited the respiratory chain and oxidized membrane protein-thiols to elicit a Ca(2+)-independent mitochondrial permeability transition; this process was only partially inhibited by cyclosporine-A, almost fully inhibited by the thiol reagent N-ethylmaleimide (NEM) and fully inhibited by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). These actions correlated with the release of cytochrome c from isolated mitochondria as detected by Western blotting analysis. These events, typically involved in cell necrosis and/or apoptosis denote a potential specific action of (I) and analogs against tumor cells via mitochondria-mediated processes.
Collapse
Affiliation(s)
- Fernando P Rodrigues
- Departamento de Física e Química, Universidade de São Paulo, RibeirãoPreto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|