1
|
Shastri D, Raj V, Lee S. Revolutionizing Alzheimer's treatment: Harnessing human serum albumin for targeted drug delivery and therapy advancements. Ageing Res Rev 2024; 99:102379. [PMID: 38901740 DOI: 10.1016/j.arr.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder initiated by amyloid-beta (Aβ) accumulation, leading to impaired cognitive function. Several delivery approaches have been improved for AD management. Among them, human serum albumin (HSA) is broadly employed for drug delivery and targeting the Aβ in AD owing to its biocompatibility, Aβ inhibitory effect, and nanoform, which showed blood-brain barrier (BBB) crossing ability via glycoprotein 60 (gp60) receptor and secreted protein acidic and rich in cysteine (SPARC) protein to transfer the drug molecules in the brain. Thus far, there is no previous review focusing on HSA and its drug delivery system in AD. Hence, the reviewed article aimed to critically compile the HSA therapeutic as well as drug delivery role in AD management. It also delivers information on how HSA-incorporated nanoparticles with surfaced embedded ligands such as TAT, GM1, and so on, not only improve BBB permeability but also increase neuron cell targetability in AD brain. Additionally, Aβ and tau pathology, including various metabolic markers likely BACE1 and BACE2, etc., are discussed. Besides, the molecular interaction of HSA with Aβ and its distinctive forms are critically reviewed that HSA can segregate Zn(II) and Cu(II) metal ions from Aβ owing to high affinity. Furthermore, the BBB drug delivery challenges in AD are addressed. Finally, the clinical formulation of HSA for the management of AD is critically discussed on how the HSA inhibits Aβ oligomer and fibril, while glycated HSA participates in amyloid plaque formation, i.e., β-structure sheet formation. This review report provides theoretical background on HSA-based AD drug delivery and makes suggestions for future prospect-related work.
Collapse
Affiliation(s)
- Divya Shastri
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea; College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, the Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| |
Collapse
|
2
|
Adeshara KA, Agrawal SB, Gaikwad SM, Tupe RS. Pioglitazone inhibits advanced glycation induced protein modifications and down-regulates expression of RAGE and NF-κB in renal cells. Int J Biol Macromol 2018; 119:1154-1163. [PMID: 30096396 DOI: 10.1016/j.ijbiomac.2018.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The present work aims to determine the effect of pioglitazone on in-vitro albumin glycation and AGE-RAGE induced oxidative stress and inflammation. Bovine serum albumin was glycated by methylglyoxal in absence or presence of pioglitazone. Glycation markers (fructosamine, carbonyl groups, β-amyloid aggregation, thiol groups, bilirubin binding capacity and AOPP); protein conformational changes (native-PAGE and HPLC analysis) were determined. Cellular study was done by estimating antioxidants, ROS levels, expression profile of membrane RAGE, NF-κB and levels of inflammatory cytokines (IL-6, TNF-α) using HEK-293 cell line. We observed that levels of glycation markers were reduced at higher concentration of pioglitazone as compared to glycated albumin. Structural analysis of glycated albumin showed inhibition of protein migration and structural changes when treated with pioglitazone. Pioglitazone has potentially restored cellular antioxidants and reduced levels of IL-6 and TNF-α by declining expression of membrane RAGE and NF-κB. In conclusion, pioglitazone preferentially binds to protein and alleviates protein structural changes by maintaining its integrity. Additionally, it suppresses RAGE and NF-κB levels hence alleviate cellular oxidative stress and inflammation.
Collapse
Affiliation(s)
- Krishna A Adeshara
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune, India
| | | | - Sushama M Gaikwad
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
| | - Rashmi S Tupe
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune, India.
| |
Collapse
|
3
|
Meeprom A, Chan CB, Sompong W, Adisakwattana S. Isoferulic acid attenuates methylglyoxal-induced apoptosis in INS-1 rat pancreatic β-cell through mitochondrial survival pathways and increasing glyoxalase-1 activity. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
4
|
Ashraf JM, Ansari MA, Fatma S, Abdullah SMS, Iqbal J, Madkhali A, Hamali AH, Ahmad S, Jerah A, Echeverria V, Barreto GE, Ashraf GM. Inhibiting Effect of Zinc Oxide Nanoparticles on Advanced Glycation Products and Oxidative Modifications: a Potential Tool to Counteract Oxidative Stress in Neurodegenerative Diseases. Mol Neurobiol 2018; 55:7438-7452. [DOI: 10.1007/s12035-018-0935-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
|
5
|
Ramirez Segovia AS, Wrobel K, Acevedo Aguilar FJ, Corrales Escobosa AR, Wrobel K. Effect of Cu(ii) on in vitro glycation of human serum albumin by methylglyoxal: a LC-MS-based proteomic approach. Metallomics 2017; 9:132-140. [PMID: 28001159 DOI: 10.1039/c6mt00235h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been reported that glycation of human serum albumin (HSA) changes its capability for copper binding whereas the increase of free copper might have an impact on protein glycation - a key process in diabetes progression. In this work, proteomic analysis of non-glycated HSA and HSA glycated with methylglyoxal (MGo) in the absence or in the presence of Cu(ii) (0.1; 1.0; 5.0 mg Cu L-1) has been undertaken. Trypsin hydrolysates were subjected to capillary HPLC-ESI-QTOF-MS and MS/MS. Raw data were analyzed using two proteomic platforms: MaxQuant () and ProteinScape (Bruker). Considering seven MGo-derived modifications, the sequence coverage was 98% for non-modified HSA and ≥93% for HSA incubated with MGo or MGo + Cu(ii). Peptide mapping yielded 76 identical peptides in all samples though important differences were found between non-modified HSA and protein glycated with or without Cu(ii). Overall, 46 peptides with residues from 1 to 3 modified were detected/sequenced; the MGo-derived modifications found were: hydroimidazolone, argpyrimidine, Nε-carboxyethyl-lysine and S-carboxyethyl-cysteine; 39 modified sites were identified (22 on arginine, 12 on lysine, and 5 on cysteine) and among them, 27 were common for ProteinScape and MaxQuant. The count of the modified peptides and the comparative analysis of their abundance in different samples indicated that Cu(ii) at physiological and sub-physiological concentrations inhibited HSA glycation as compared to the glycation of the Cu-devoid protein; at higher concentrations (5 mg Cu L-1), this inhibitory effect tends to be inverted. The results obtained suggest that increased protein glycation might be associated with Cu-deficiency and with excessive Cu(ii) concentrations, calling for more detailed studies performed on real-world samples with a strict control of copper concentration.
Collapse
Affiliation(s)
| | - Kazimierz Wrobel
- Department of Chemistry, University of Guanajuato, L de Retana No. 5, 36000 Guanajuato, Mexico.
| | | | | | - Katarzyna Wrobel
- Department of Chemistry, University of Guanajuato, L de Retana No. 5, 36000 Guanajuato, Mexico.
| |
Collapse
|
6
|
Giacconi R, Cai L, Costarelli L, Cardelli M, Malavolta M, Piacenza F, Provinciali M. Implications of impaired zinc homeostasis in diabetic cardiomyopathy and nephropathy. Biofactors 2017; 43:770-784. [PMID: 28845600 DOI: 10.1002/biof.1386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
Abstract
Impaired zinc homeostasis is observed in diabetes mellitus (DM2) and its complications. Zinc has a specific role in pancreatic β-cells via insulin synthesis, storage, and secretion. Intracellular zinc homeostasis is tightly controlled by zinc transporters (ZnT and Zip families) and metallothioneins (MT) which modulate the uptake, storage, and distribution of zinc. Several investigations in animal models demonstrate the protective role of MT in DM2 and its cardiovascular or renal complications, while a copious literature shows that a common polymorphism (R325W) in ZnT8, which affects the protein's zinc transport activity, is associated with increased DM2 risk. Emerging studies highlight a role of other zinc transporters in β-cell function, suggesting that targeting them could make a possible contribution in managing the hyperglycemia in diabetic patients. This article summarizes the current findings concerning the role of zinc homeostasis in DM2 pathogenesis and development of diabetic cardiomyopathy and nephropathy and suggests novel therapeutic targets. © 2017 BioFactors, 43(6):770-784, 2017.
Collapse
Affiliation(s)
- Robertina Giacconi
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Lu Cai
- Pediatric Research Institute at the Department of Pediatrics, Wendy L. Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| | - Laura Costarelli
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Marco Malavolta
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Francesco Piacenza
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| |
Collapse
|
7
|
N
ε-(carboxymethyl)-l-lysine content in cheese, meat and fish products is affected by the presence of copper during elaboration process. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2949-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
9
|
Lee P, Wu X. Review: modifications of human serum albumin and their binding effect. Curr Pharm Des 2016; 21:1862-5. [PMID: 25732553 DOI: 10.2174/1381612821666150302115025] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
Abstract
Human serum albumin (HSA) regulates the transport and availability of numerous chemical compounds and molecules in the blood vascular system. While previous HSA research has found that HSA interacts with specific varieties of ligands, new research efforts aim to expand HSA's ability to interact with more different drugs in order to improve the delivery of various pharmacological drugs. This review will cover fatty acid chain and posttranslational modifications of HSA that potentially modulate how HSA interacts with various pharmacological drugs, including glycation, cysteinylation, S-nitrosylation, S-transnitrosation and S-guanylation.
Collapse
Affiliation(s)
| | - Xiaoyang Wu
- 929 E. 57 St., Chicago, Illinois USA, Zip code: 60637.
| |
Collapse
|
10
|
Ashraf JM, Arfat MY, Arif Z, Ahmad J, Moinuddin, Alam K. A clinical correlation of anti-DNA-AGE autoantibodies in type 2 diabetes mellitus with disease duration. Cell Immunol 2015; 293:74-9. [PMID: 25577340 DOI: 10.1016/j.cellimm.2014.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/02/2014] [Accepted: 12/23/2014] [Indexed: 11/25/2022]
Abstract
Nonenzymatic glycation of amino groups of DNA bases by reducing sugars can generate advanced glycation end products (AGEs). Cellular formation of AGEs under normal physiology is continuously scanned and removed by efficient system in the cells. However, excess formation and accumulation of AGEs may be cause or consequence of some human diseases. Mammalian DNA incubated with d-glucose for 28 days at 37°C showed structural changes in DNA as confirmed by UV, fluorescence, CD, melting temperature, S1 nuclease sensitivity and gel electrophoresis. Formation of DNA-AGE was confirmed by HPLC and LC-MS. Enzyme immunoassay and electrophoretic mobility shift assay of autoantibodies in type 2 diabetes patients' sera with disease duration of 5-15 years exhibited significantly high binding with DNA-AGE as compared to patients with 1-5 years of disease duration. Autoantibodies against aberrant DNA-AGE may be important in the assessment of initiation/progression of secondary complications in type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Jalaluddin M Ashraf
- Department of Biochemistry, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India
| | - Mir Yasir Arfat
- Department of Biochemistry, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India
| | - Zarina Arif
- R.G. Centre for Diabetes and Endocrinology, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India
| | - Jamal Ahmad
- R.G. Centre for Diabetes and Endocrinology, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, A.M.U., Aligarh-202002, UP, India.
| |
Collapse
|
11
|
Giacconi R, Simm A, Santos AN, Costarelli L, Malavolta M, Mecocci P, Piacenza F, Basso A, Fulop T, Rink L, Dedoussis G, Kanoni S, Herbein G, Jajte J, Mocchegiani E. Influence of +1245 A/G MT1A polymorphism on advanced glycation end-products (AGEs) in elderly: effect of zinc supplementation. GENES AND NUTRITION 2014; 9:426. [PMID: 25149676 DOI: 10.1007/s12263-014-0426-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/09/2014] [Indexed: 11/25/2022]
Abstract
Advanced glycation end-products (AGEs) stimulate reactive oxygen species (ROS) generation and represent a risk factor for atherosclerosis, while their formation seems to be prevented by zinc. Metallothioneins (MT), zinc-binding proteins exert an antioxidant function by regulating intracellular zinc availability and protecting cells from ROS damages. +1245 A/G MT1A polymorphism was implicated in type 2 diabetes and in cardiovascular disease development as well as in the modulation of antioxidant response. The purpose of this study was to investigate the influence of +1245 A/G MT1A polymorphism on AGEs and ROS production and to verify the effect of zinc supplementation on plasma AGEs, zinc status parameters and antioxidant enzyme activity in relation to this SNP. One hundred and ten healthy subjects (72 ± 6 years) from the ZincAge study were supplied with zinc aspartate (10 mg/day for 7 weeks) and screened for +1245 MT1A polymorphism. +1245 MT1A G+ (Arginine) genotype showed higher plasma AGEs and ROS production in peripheral blood mononuclear cells (PBMCs) than G- (Lysine) one at the baseline. No significant changes after zinc supplementation were observed for AGEs, ROS and MT levels as well as for enzyme antioxidant activity in relation to the genotype. Among zinc status parameters, major increases were observed for the intracellular labile zinc (iZnL) and the NO-induced release of zinc in PBMCs, in G+ genotype as compared to G- one. In summary, +1245 G+ carriers showed increased plasma AGEs and ROS production in PBMCs at baseline and a higher improvement in iZnL after zinc intervention with respect to G- individuals.
Collapse
Affiliation(s)
- Robertina Giacconi
- Translation Research Center of Nutrition and Ageing, Italian National Research Centre on Aging (INRCA-IRCCS), Via Birarelli 8, 60121, Ancona, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Baraka-Vidot J, Navarra G, Leone M, Bourdon E, Militello V, Rondeau P. Deciphering metal-induced oxidative damages on glycated albumin structure and function. Biochim Biophys Acta Gen Subj 2014; 1840:1712-24. [PMID: 24380878 DOI: 10.1016/j.bbagen.2013.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/25/2013] [Accepted: 12/09/2013] [Indexed: 01/14/2023]
|
13
|
Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by methylglyoxal and glyoxal and its prevention by various compounds. Molecules 2014; 19:4880-96. [PMID: 24747646 PMCID: PMC6271924 DOI: 10.3390/molecules19044880] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to compare several methods for measurement of bovine serum albumin (BSA) modification by glycoxidation with reactive dicarbonyl compounds (methylglyoxal ‒ MGO and glyoxal ‒ GO), for studies of the kinetics of this process and to compare the effects of 19 selected compounds on BSA glycation by the aldehydes. The results confirm the higher reactivity of MGO with respect to GO and point to the usefulness of AGE, dityrosine and N′-formylkynurenine fluorescence for monitoring glycation and evaluation of protection against glycation. Different extent of protection against glycation induced by MGO and GO was found for many compounds, probably reflecting effects on various stages of the glycation process. Polyphenols (genistein, naringin and ellagic acid) were found to protect against aldehyde-induced glycation; 1-cyano-4-hydroxycinnamic acid was also an effective protector.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, University of Rzeszów, Zelwerowicza St. 4, PL 35-601 Rzeszów, Poland.
| | - Sabina Galiniak
- Department of Biochemistry and Cell Biology, University of Rzeszów, Zelwerowicza St. 4, PL 35-601 Rzeszów, Poland
| | - Grzegorz Bartosz
- Department of Biochemistry and Cell Biology, University of Rzeszów, Zelwerowicza St. 4, PL 35-601 Rzeszów, Poland
| |
Collapse
|