1
|
Trávníček Z, Vančo J, Belza J, Zoppellaro G, Dvořák Z, Beláková B, Schmid JA, Molčanová L, Šmejkal K. C-Geranylated flavanone diplacone enhances in vitro antiproliferative and anti-inflammatory effects in its copper(II) complexes. J Inorg Biochem 2024; 258:112639. [PMID: 38880070 DOI: 10.1016/j.jinorgbio.2024.112639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Two copper(II) complexes containing diplacone (H4dipl), a naturally occurring C-geranylated flavanone derivative, in combination with bathophenanthroline (bphen) or 1,10-phenanthroline (phen) with the composition [Cu3(bphen)3(Hdipl)2]⋅2H2O (1) and {[Cu(phen)(H2dipl)2]⋅1.25H2O}n (2) were prepared and characterized. As compared to diplacone, the complexes enhanced in vitro cytotoxicity against A2780 and A2780R human ovarian cancer cells (IC50 ≈ 0.4-1.2 μM), human lung carcinoma (A549, with IC50 ≈ 2 μM) and osteosarcoma (HOS, with IC50 ≈ 3 μM). Cellular effects of the complexes in A2780 cells were studied using flow cytometry, covering studies concerning cell-cycle arrest, induction of cell death and autophagy and induction of intracellular ROS/superoxide production. These results uncovered a possible mechanism of action characterized by the G2/M cell cycle arrest. The studies on human endothelial cells revealed that complexes 1 and 2, as well as their parental compound diplacone, do possess anti-inflammatory activity in terms of NF-κB inhibition. As for the effects on PPARα and/or PPARγ, complex 2 reduced the expression of leukocyte adhesion molecules VCAM-1 and E-selectin suggesting its dual anti-inflammatory capacity. A wide variety of Cu-containing coordination species and free diplacone ligand were proved by mass spectrometry studies in water-containing media, which might be responsible for multimodal effect of the complexes.
Collapse
Affiliation(s)
- Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic.
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Jan Belza
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Barbora Beláková
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Center for Physiology and Pharmacology, Schwarzspanierstraße 17, A1090 Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Center for Physiology and Pharmacology, Schwarzspanierstraße 17, A1090 Vienna, Austria
| | - Lenka Molčanová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 612 00 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Zhou N, Wei S, Sun T, Xie S, Liu J, Li W, Zhang B. Recent progress in the role of endogenous metal ions in doxorubicin-induced cardiotoxicity. Front Pharmacol 2023; 14:1292088. [PMID: 38143497 PMCID: PMC10748411 DOI: 10.3389/fphar.2023.1292088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Doxorubicin is a widely used anticancer drug in clinical practice for the treatment of various human tumors. However, its administration is associated with cardiotoxicity. Administration of doxorubicin with low side effects for cancer treatment and prevention are, accordingly, urgently required. The human body harbors various endogenous metal ions that exert substantial influences. Consequently, extensive research has been conducted over several decades to investigate the potential of targeting endogenous metal ions to mitigate doxorubicin's side effects and impede tumor progression. In recent years, there has been a growing body of research indicating the potential efficacy of metal ion-associated therapeutic strategies in inhibiting doxorubicin-induced cardiotoxicity (DIC). These strategies offer a combination of favorable safety profiles and potential clinical utility. Alterations in intracellular levels of metal ions have been found to either facilitate or mitigate the development of DIC. For instance, ferroptosis, a cellular death mechanism, and metal ions such as copper, zinc, and calcium have been identified as significant contributors to DIC. This understanding can contribute to advancements in cancer treatment and provide valuable insights for mitigating the cardiotoxic effects of other therapeutic drugs. Furthermore, potential therapeutic strategies have been investigated to alleviate DIC in clinical settings. The ultimate goal is to improve the efficacy and safety of Dox and offer valuable insights for future research in this field.
Collapse
Affiliation(s)
- Ni Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
- School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
- School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
- School of Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Khademi R, Mohammadi Z, Khademi R, Saghazadeh A, Rezaei N. Nanotechnology-based diagnostics and therapeutics in acute lymphoblastic leukemia: a systematic review of preclinical studies. NANOSCALE ADVANCES 2023; 5:571-595. [PMID: 36756502 PMCID: PMC9890594 DOI: 10.1039/d2na00483f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/19/2022] [Indexed: 05/23/2023]
Abstract
Background: Leukemia is a malignant disease that threatens human health and life. Nano-delivery systems improve drug solubility, bioavailability, and blood circulation time, and release drugs selectively at desired sites using targeting or sensing strategies. As drug carriers, they could improve therapeutic outcomes while reducing systemic toxicity. They have also shown promise in improving leukemia detection and diagnosis. The study aimed to assess the potential of nanotechnology-based diagnostics and therapeutics in preclinical human acute lymphoblastic leukemia (h-ALL). Methods: We performed a systematic search through April 2022. Articles written in English reporting the toxicity, efficacy, and safety of nanotechnology-based drugs (in the aspect of treatment) and specificity, limit of detection (LOD), or sensitivity (in the aspect of the detection field) in preclinical h-ALL were included. The study was performed according to PRISMA instructions. The methodological quality was assessed using the QualSyst tool. Results: A total of 63 original articles evaluating nanotechnology-based therapeutics and 35 original studies evaluating nanotechnology-based diagnostics were included in this review. As therapeutics in ALL, nanomaterials offer controlled release, targeting or sensing ligands, targeted gene therapy, photodynamic therapy and photothermic therapy, and reversal of multidrug-resistant ALL. A narrative synthesis of studies revealed that nanoparticles improve the ratio of efficacy to the toxicity of anti-leukemic drugs. They have also been developed as a vehicle for biomolecules (such as antibodies) that can help detect and monitor leukemic biomarkers. Therefore, nanomaterials can help with early diagnostics and personalized treatment of ALL. Conclusion: This review discussed nanotechnology-based preclinical strategies to achieve ALL diagnosis and therapy advancement. This involves modern drug delivery apparatuses and detection devices for prompt and targeted disease diagnostics. Nonetheless, we are yet in the experimental phase and investigational stage in the field of nanomedicine, with many features remained to be discovered as well as numerous problems to be solved.
Collapse
Affiliation(s)
- Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Department of Medical Laboratory Sciences, School of Para-medicine, Ahvaz Jundishapour University of Medical Sciences Ahvaz Iran
| | - Zahra Mohammadi
- Radiological Technology Department of Actually Paramedical Sciences, Babol University of Medical Sciences Babol Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN) Babol Iran
| | - Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences Dr Qarib St, Keshavarz Blvd Tehran 14194 Iran +98-21-6692-9235 +98-21-6692-9234
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences Dr Qarib St, Keshavarz Blvd Tehran 14194 Iran +98-21-6692-9235 +98-21-6692-9234
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
4
|
Stefàno E, Muscella A, Benedetti M, De Castro F, Fanizzi FP, Marsigliante S. Antitumor and antimigration effects of a new Pt compound on neuroblastoma cells. Biochem Pharmacol 2022; 202:115124. [PMID: 35688179 DOI: 10.1016/j.bcp.2022.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
Among the new Pt complexes with anticancer properties, phenanthroline derivatives have aroused great interest due to their different mode of action compared to cisplatin. We previously examined cytotoxic effects of a new Pt(II)-complex containing 1,10-phenantroline (phen), [Pt(η1-C2H4OMe)(DMSO)(phen)]Cl, in a panel of eight human cancer cell lines, and showed that it exerted the greatest cytotoxic effect in the neuroblastoma SH-SY5Y cell line. In this study, the antiproliferative and antimetastatic potential of [Pt(η1-C2H4OMe)(DMSO)(phen)]+ (in short Pt-EtOMeSOphen) was investigated in neuroblastoma SH-SY5Y, SK-N-SH and SK-N-BE(2) cells. Pt-EtOMeSOphen provoked the early signs of apoptosis induction (cleavage of PARP and activation of caspases-9 and -7); it also increased the level of proapoptotic Bax protein whereas it decreased the level of the antiapoptotic Bcl-2 protein. The effects of Pt-EtOMeSOphen on migration and invasion processes were also evaluated. A decrease of cell migration/invasion by Pt-EtOMeSOphen was observed through 2D and 3D in vitro assays. Pt-EtOMeSOphen was found to exert its actions by decreasing MMP-9 and MMP-2 expressions and activities. Pt-EtOMeSOphen provoked the phosphorylation of both ERK1/2 and p38 MAPKs. All the effects of Pt-EtOMeSOphen on SH-SY5Y cell vitality, migration and metalloproteases activities described here were due to the activation of p38 MAPK since pharmacological p38 MAPK inhibition or small interfering RNAs to p38 MAPK mRNA blocked such effects. Results suggest that Pt-EtOMeSOphen inhibits neuroblastoma cancer cells survival, motility, and invasion. This could lead to the reduction of neuroblastoma metastatic potential.
Collapse
Affiliation(s)
- Erika Stefàno
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | - Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy.
| | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy.
| | - Federica De Castro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
5
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Masuri S, Cadoni E, Cabiddu MG, Isaia F, Demuru MG, Moráň L, Buček D, Vaňhara P, Havel J, Pivetta T. The first copper(ii) complex with 1,10-phenanthroline and salubrinal with interesting biochemical properties. Metallomics 2021; 12:891-901. [PMID: 32337526 DOI: 10.1039/d0mt00006j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The novel copper complex [Cu(phen)2(salubrinal)](ClO4)2 (C0SAL) has been synthesised and characterised. Copper(ii) is coordinated by salubrinal through the thionic group, as shown by the UV-Vis, IR, ESI-MS and tandem mass results, together with the theoretical calculations. The formed complex showed a DPPH radical scavenging ability higher than that of salubrinal alone. Studies on lipid oxidation inhibition showed that the C0SAL concentration, required to inhibit the enzyme, was lower than that of salubrinal. The inhibition of the enzyme could take place via allosteric modulation, as suggested by docking calculations. C0SAL showed a good cytotoxic activity on A2780 cells, 82 fold higher than that of the precursor salubrinal and 1.4 fold higher than that of [Cu(phen)2(H2O)](ClO4)2. Treatment with C0SAL in SKOV3 ovarian cancer cells induced expression of GRP-78 and DDIT3 regulators of ER-stress response. The cytotoxic effect of C0SAL was reverted in the presence of TUDCA, suggesting that C0SAL induces cell death through ER-stress. In A2780 cells treated with C0SAL γ-H2AX was accumulated, suggesting that DNA damage was also involved.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| | - Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| | - Maria Grazia Cabiddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| | - Maria Giovanna Demuru
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic and International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - David Buček
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic and International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic and Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tiziana Pivetta
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| |
Collapse
|
7
|
Sequeira D, Baptista PV, Valente R, Piedade MFM, Garcia MH, Morais TS, Fernandes AR. Cu(I) complexes as new antiproliferative agents against sensitive and doxorubicin resistant colorectal cancer cells: synthesis, characterization, and mechanisms of action. Dalton Trans 2021; 50:1845-1865. [PMID: 33470993 DOI: 10.1039/d0dt03566a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer is one of the worst health issues worldwide, representing the second leading cause of death. Current chemotherapeutic drugs face some challenges like the acquired resistance of the tumoral cells and low specificity leading to unwanted side effects. There is an urgent need to develop new compounds that may target resistant cells. The synthesis and characterization of two Cu(i) complexes of general formula [Cu(PP)(LL)][BF4], where PP is a phosphane ligand (triphenylphosphine or 1,2-bis(diphenylphosphano) ethane) and LL = is a heteroaromatic bidentate ligand (4,4'-dimethyl-2,2'-bipyridine and 6,3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine). The new compounds were fully characterized by spectroscopic techniques (NMR, FTIR and UV-vis.), elemental analysis (C, H, N and S) and two structures were determined by single X-ray diffraction studies. The antiproliferative potential of the new Cu(i) complexes were studied in tumor (breast adenocarcinoma, ovarian carcinoma and in colorectal carcinoma sensitive and resistant to doxorubicin) and normal (fibroblasts) cell lines. Complexes 1-4 did not show any antiproliferative potential. Amongst the complexes 5-8, complex 8 shows high cytotoxic potential against colorectal cancer sensitive and resistant to doxorubicin and low cytotoxicity towards healthy cells. We show that complexes 5-8 can cleave pDNA and, in particular, the in vitro pDNA cleavage is due to an oxidative mechanism. This oxidative mechanism corroborates the induction of reactive oxygen species (ROS), that triggers HCT116 cell death via apoptosis, as proved by the increased expression of BAX protein relative to BCL-2 protein and the depolarization of mitochondrial membrane potential, and via autophagy. Additionally, complex 8 can block the cell cycle in the G1 phase, also exhibiting a cytostatic potential. Proteomic analysis confirmed the apoptotic, autophagic and cytostatic potential of complex 8, as well as its ability to produce ROS and cause DNA damage. The interference of the complex in folding and protein synthesis and its ability to cause post-translational modifications was also verified. Finally, it was observed that the complex causes a reduction in cellular metabolism. The results herein demonstrated the potential of Cu(i) complexes in targeting doxorubicin sensitive and resistant cells which is positive and must be further explored using in vivo animal models.
Collapse
Affiliation(s)
- Diogo Sequeira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| | - M Fátima M Piedade
- DQB-FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal. and CQE@IST, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - M Helena Garcia
- DQB-FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal. and CQE@FCUL, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Tânia S Morais
- DQB-FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal. and CQE@FCUL, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
8
|
Sciortino G, Maréchal JD, Garribba E. Integrated experimental/computational approaches to characterize the systems formed by vanadium with proteins and enzymes. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01507e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An integrated instrumental/computational approach to characterize metallodrug–protein adducts at the molecular level is reviewed. A series of applications are described, focusing on potential vanadium drugs with a generalization to other metals.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química
- Universitat Autònoma de Barcelona
- Cerdanyola del Vallès
- Barcelona 08193
- Spain
| | - Jean-Didier Maréchal
- Departament de Química
- Universitat Autònoma de Barcelona
- Cerdanyola del Vallès
- Barcelona 08193
- Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- 07100 Sassari
- Italy
| |
Collapse
|
9
|
Mawai K, Nathani S, Tuglak Khan FS, Verma P, Kumari S, Roy P, Singh UP, Ghosh K. Dinuclear μ‐Phenoxo and μ‐Hydroxo Bridged Copper Complexes Exhibiting Oxidation of Phenols and Isoelectronic Compounds: Cytotoxicity and Evidences for Cellular Apoptosis. ChemistrySelect 2020. [DOI: 10.1002/slct.201903923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kiran Mawai
- Department of chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - Sandip Nathani
- Department of Biotechnology Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - Firoz Shah Tuglak Khan
- Department of chemistry Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh 208016 India
| | - Pankaj Verma
- Department of chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - Sheela Kumari
- Department of chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - Partha Roy
- Department of Biotechnology Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - U. P. Singh
- Department of chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| | - Kaushik Ghosh
- Department of chemistry Indian Institute of Technology Roorkee Roorkee, Uttarakhand 247667 India
| |
Collapse
|
10
|
Cao S, Li X, Gao Y, Li F, Li K, Cao X, Dai Y, Mao L, Wang S, Tai X. A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy. Dalton Trans 2020; 49:11851-11858. [DOI: 10.1039/d0dt01742f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A bimetallic Cu(ii) complex was developed as a novel antitumor chemodynamic therapy agent with glutathione depletion properties.
Collapse
|
11
|
[{Diaquo(3,5-dinitrobenzoato-κ1O1)(1,10-phenanthroline-κ2N1:N10)}copper(II)] 3,5-dinitrobenzoate: Hydrothermal synthesis, crystal structure and magnetic properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Vascellari S, Valletta E, Perra D, Pinna E, Serra A, Isaia F, Pani A, Pivetta T. Cisplatin, glutathione and the third wheel: a copper-(1,10-phenanthroline) complex modulates cisplatin-GSH interactions from antagonism to synergism in cancer cells resistant to cisplatin. RSC Adv 2019; 9:5362-5376. [PMID: 35515894 PMCID: PMC9060805 DOI: 10.1039/c8ra09652j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 11/21/2022] Open
Abstract
The antagonistic effect of glutathione (GSH) against the cytotoxicity of cisplatin was observed in both wild type and cisplatin-resistant human leukaemia and ovarian carcinoma cell lines. The simultaneous presence of the cytotoxic copper complex [Cu(phen)2(OH2)](ClO4)2 (C0) restored the sensitivity of the cells to cisplatin, and, at selected concentrations, led to strong synergistic effects. The C0-cisplatin-glutathione system showed a synergistic toxic effect even in the presence of 1000 μM GSH. The three-drug cocktail exerted a higher potency against leukemic cells than against freshly isolated lymphocytes from healthy donors. Compared to actively proliferating normal lymphocytes, leukaemia cells were much more susceptible to the cytocide effect of the three-drug combination and underwent the dying process(es) much faster. When the ovarian carcinoma cells were treated with cisplatin, alone or in combination with C0, late apoptotic effects were mainly observed, suggesting that DNA interactions with the C0-cisplatin complex trigger a process of programmed cell death. In contrast, the ternary combination induced apoptotic effects similar to that shown by C0 in single treatment, that is, early apoptosis. One possible explanation is that C0 and cisplatin compete for GSH-binding in the culture medium. GSH in combination with C0 and cisplatin caused a significant induction of the apoptotic process(es), through a pathway which does not compromise the integrity of the plasma membrane of cells.
Collapse
Affiliation(s)
- Sarah Vascellari
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari 09042 Monserrato CA Italy
| | - Elisa Valletta
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari 09042 Monserrato CA ITALY
| | - Daniela Perra
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari 09042 Monserrato CA Italy
| | - Elisabetta Pinna
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari 09042 Monserrato CA Italy
| | - Alessandra Serra
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari 09042 Monserrato CA Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari 09042 Monserrato CA ITALY
| | - Alessandra Pani
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari 09042 Monserrato CA Italy
| | - Tiziana Pivetta
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari 09042 Monserrato CA ITALY
| |
Collapse
|
13
|
Cadoni E, Vanhara P, Valletta E, Pinna E, Vascellari S, Caddeo G, Isaia F, Pani A, Havel J, Pivetta T. Mass spectrometric discrimination of phospholipid patterns in cisplatin-resistant and -sensitive cancer cells. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:97-106. [PMID: 30376198 DOI: 10.1002/rcm.8320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/20/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Development of therapy-resistant cancer is a major problem in clinical oncology, and there is an urgent need for novel markers identifying development of the resistant phenotype. Lipidomics represents a promising approach to discriminate lipid profiles of malignant phenotype cells. Alterations in phospholipid distribution or chemical composition have been reported in various pathologies including cancer. Here we were curious whether quantitative differences in phospholipid composition between cisplatin-resistant and -sensitive model cancer cell lines could be revealed by mass spectrometric means. METHODS The phospholipid contents of cell membranes of the cancer cell lines CCRF-CEM and A2780, both responsive and resistant to cisplatin, were analyzed by solid-phase extraction (SPE) and electrospray ionization mass spectrometry (ESI-MS and tandem mass spectrometry (MS/MS)). Extracts were obtained by disruption of cells with a dounce tissue grinder set followed by centrifugation. To minimize the enzymatic activity, phospholipids were extracted from cell extracts by SPE immediately after the cell lysis and analyzed by MS. Both supernatant and pellet fractions of cell extracts were analyzed. RESULTS A phospholipid profile specific for cell lines and their phenotypes was revealed. We have documented by quantitative analysis that phosphocholines PC P-34:0, PC 34:1, PC 20:2_16:0, LPC 18:1 and LPC 16:0 PLs were present in the 200-400 μM concentration range in CCRF-CEM cisplatin-responsive cells, but absent in their cisplatin-resistant cells. Similarly, PC 34:1, LPC 18:1 and LPC 16:0 were increased in cisplatin-responsive A2780 cells, and PC 20:2_16:0 was downregulated in cisplatin-resistant A2780 cells. CONCLUSIONS In this work we showed that the ESI-MS analysis of the lipid content of the therapy-resistant and -sensitive cells can clearly distinguish the phenotypic pattern and determine the potential tumor response to cytotoxic therapy. Lipid entities revealed by mass spectrometry and associated with development of therapy resistance can thus support molecular diagnosis and provide a potential complementary cancer biomarker.
Collapse
Affiliation(s)
- Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cagliari, Italy
| | - Petr Vanhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Elisa Valletta
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cagliari, Italy
| | - Elisabetta Pinna
- Dipartimento di Scienze Biomediche, University of Cagliari, Cagliari, Italy
| | - Sarah Vascellari
- Dipartimento di Scienze Biomediche, University of Cagliari, Cagliari, Italy
| | - Graziano Caddeo
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cagliari, Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cagliari, Italy
| | - Alessandra Pani
- Dipartimento di Scienze Biomediche, University of Cagliari, Cagliari, Italy
| | - Josef Havel
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tiziana Pivetta
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cagliari, Italy
| |
Collapse
|
14
|
Moráň L, Pivetta T, Masuri S, Vašíčková K, Walter F, Prehn J, Elkalaf M, Trnka J, Havel J, Vaňhara P. Mixed copper(ii)–phenanthroline complexes induce cell death of ovarian cancer cells by evoking the unfolded protein response. Metallomics 2019; 11:1481-1489. [DOI: 10.1039/c9mt00055k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is an ongoing need for development of new therapeutics that override acquired resistance to cancer therapy. Targeting endoplasmic reticulum by Cu(ii)–phenanthroline complexes may represent such alternative strategy to current cytotoxic drugs.
Collapse
|
15
|
Pivetta T, Masuri S, Cabiddu MG, Caltagirone C, Pintus A, Massa M, Isaia F, Cadoni E. A novel ratiometric and turn-on fluorescent coumarin-based probe for Fe(iii). NEW J CHEM 2019. [DOI: 10.1039/c9nj02044f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
6-Methoxy-3-(pyridin-2-yl)-2H-chromen-2-one exhibited fluorescence enhancement in the presence of Fe(iii). This molecule was a selective fluorescent chemosensor for Fe(iii).
Collapse
Affiliation(s)
- Tiziana Pivetta
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Sebastiano Masuri
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Maria Grazia Cabiddu
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Anna Pintus
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Michela Massa
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| |
Collapse
|
16
|
Morais TS, Jousseaume Y, M Piedade MF, Roma-Rodrigues C, Fernandes AR, Marques F, Villa de Brito MJ, Garcia MH. Important cytotoxic and cytostatic effects of new copper(i)-phosphane compounds with N,N, N,O and N,S bidentate ligands. Dalton Trans 2018; 47:7819-7829. [PMID: 29850763 DOI: 10.1039/c8dt01653d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A family of six phosphane Cu(i) complexes bearing N,N, N,O and N,S bidentate ligands was synthesized. All the compounds were fully characterized by classical analytical and spectroscopic methods, and five of them were also characterized by X-ray diffraction studies. All the compounds exhibit high cytotoxicity against the human breast cancer cell line MCF7 with IC50 values far lower than those found for cisplatin, a current chemotherapeutic in clinical use. Compounds 1[combining low line] and 3[combining low line] induce cell cycle arrest in the G2/M phase and cell death by apoptosis. The cytotoxic and cytostatic effects of these compounds on MCF7 cells suggest that they are suitable for further in vivo studies with breast cancer models.
Collapse
Affiliation(s)
- Tânia S Morais
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal. and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Yann Jousseaume
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal. and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - M Fátima M Piedade
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal and Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Catarina Roma-Rodrigues
- UCBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | - Alexandra R Fernandes
- UCBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Maria J Villa de Brito
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal. and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - M Helena Garcia
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal. and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| |
Collapse
|
17
|
Cadoni E, Valletta E, Caddeo G, Isaia F, Cabiddu MG, Vascellari S, Pivetta T. Competitive reactions among glutathione, cisplatin and copper-phenanthroline complexes. J Inorg Biochem 2017; 173:126-133. [PMID: 28511063 DOI: 10.1016/j.jinorgbio.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/03/2017] [Accepted: 05/07/2017] [Indexed: 12/29/2022]
Abstract
A large number of cancers are treated with cisplatin (CDDP). However, its use is limited by drug resistance, which is often related to intracellular levels of thiol-containing molecules such as glutathione (GSH). The role of GSH in cisplatin-resistant cancer cells is still unclear. GSH may form adducts with CDDP which results in the deactivation of the drug, and, actually, a high intracellular level of GSH was observed in some cisplatin-resistant cancers. To overcome drug resistance, CDDP is often administered in combination with one or more drugs to exploit a possible synergistic effect. In previous studies, we observed that the sensitivity to CDDP of leukemic and ovarian cisplatin-resistant cancer cells was restored in the presence of [Cu(phen)2(H2O)](ClO4)2 (C0) (phen is 1,10-phenathroline). In order to clarify the possible interactions between GSH and CDDP, the reactivity and competitive reactions among CDDP, C0 and GSH in binary and ternary mixtures were studied. The investigation was extended also to [Cu(phen)(H2O)2(ClO4)2] (C10) and GSSG, the oxidized form of GSH. It was observed that CDDP was able to react with the studied copper complexes and with GSH or GSSG. However, in mixtures containing CDDP, GSH or GSSG and C0 or C10, only copper-glutathione complexes were detected, while no platinum-glutathione adducts were found.
Collapse
Affiliation(s)
- Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cittadella Universitaria, 09042 Monserrato - CA, Italy
| | - Elisa Valletta
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cittadella Universitaria, 09042 Monserrato - CA, Italy
| | - Graziano Caddeo
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cittadella Universitaria, 09042 Monserrato - CA, Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cittadella Universitaria, 09042 Monserrato - CA, Italy
| | - Maria Grazia Cabiddu
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cittadella Universitaria, 09042 Monserrato - CA, Italy
| | - Sarah Vascellari
- Dipartimento di Scienze Biomediche, University of Cagliari, Cittadella Universitaria, 09042 Monserrato - CA, Italy
| | - Tiziana Pivetta
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cittadella Universitaria, 09042 Monserrato - CA, Italy.
| |
Collapse
|
18
|
Tekin N, Öztürk K, Baran T, Kerimoğlu B, Tarhan M, Menteş A. Cytotoxic and apoptotic activities of novel Pd(II) complexes against human leukemia cell lines in vitro. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1294449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Wang D, Peng S, Amin ARMR, Rahman MA, Nannapaneni S, Liu Y, Shin DM, Saba NF, Eichler JF, Chen ZG. Antitumor Activity of 2,9-Di-Sec-Butyl-1,10-Phenanthroline. PLoS One 2016; 11:e0168450. [PMID: 28033401 PMCID: PMC5199049 DOI: 10.1371/journal.pone.0168450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 12/01/2016] [Indexed: 11/18/2022] Open
Abstract
The anti-tumor effect of a chelating phen-based ligand 2,9-di-sec-butyl-1,10-phenanthroline (dsBPT) and its combination with cisplatin were examined in both lung and head and neck cancer cell lines and xenograft animal models in this study. The effects of this agent on cell cycle and apoptosis were investigated. Protein markers relevant to these mechanisms were also assessed. We found that the inhibitory effect of dsBPT on lung and head and neck cancer cell growth (IC50 ranged between 0.1–0.2 μM) was 10 times greater than that on normal epithelial cells. dsBPT alone induced autophagy, G1 cell cycle arrest, and apoptosis. Our in vivo studies indicated that dsBPT inhibited tumor growth in a dose-dependent manner in a head and neck cancer xenograft mouse model. The combination of dsBPT with cisplatin synergistically inhibited cancer cell growth with a combination index of 0.3. Moreover, the combination significantly reduced tumor volume as compared with the untreated control (p = 0.0017) in a head and neck cancer xenograft model. No organ related toxicities were observed in treated animals. Our data suggest that dsBPT is a novel and potent antitumor drug that warrants further preclinical and clinical development either as a single agent or in combination with known chemotherapy drugs such as cisplatin.
Collapse
Affiliation(s)
- Dongsheng Wang
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Shifang Peng
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - A. R. M. Ruhul Amin
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Mohammad Aminur Rahman
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Sreenivas Nannapaneni
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Yuan Liu
- Department of Biostatistics and Bioinformatics, Biostatistics and Bioinformatics Shared Resource at WCI, NE, Atlanta, GA, United States of America
| | - Dong M. Shin
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Nabil F. Saba
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jack F. Eichler
- Department of Chemistry, University of California-Riverside, Riverside, CA, United States of America
| | - Zhuo G. Chen
- Department of Hematology and Medicinal Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Aranda EE, Matias TA, Araki K, Vieira AP, de Mattos EA, Colepicolo P, Luz CP, Marques FLN, da Costa Ferreira AM. Design, syntheses, characterization, and cytotoxicity studies of novel heterobinuclear oxindolimine copper(II)-platinum(II) complexes. J Inorg Biochem 2016; 165:108-118. [PMID: 27503192 DOI: 10.1016/j.jinorgbio.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022]
Abstract
Herein, the design and syntheses of two new mononuclear oxindolimine-copper(II) (1 and 2) and corresponding heterobinuclear oxindolimine Cu(II)Pt(II) complexes (3 and 4), are described. All the isolated complexes were characterized by spectroscopic techniques (UV/Vis, IR, EPR), in addition to elemental analysis and mass spectrometry. Cyclic voltammetry (CV) measurements showed that in all cases, one-electron quasi-reversible waves were observed, and ascribed to the formation of corresponding copper(I) complexes. Additionally, waves related to oxindolimine ligand reduction was verified, and confirmed using analogous oxindolimine-Zn(II) complexes. The Pt(IV/II) reduction, and corresponding oxidation, for complexes 3 and 4 occurred at very close values to those observed for cisplatin. By complementary fluorescence studies, it was shown that glutathione (GSH) cannot reduce any of these complexes, under the experimental conditions (room temperature, phosphate buffer 50mM, pH7.4), using an excess of 20-fold [GSH]. All these complexes showed characteristic EPR spectral profile, with parameters values gǁ>g⊥ suggesting an axially distorted environment around the copper(II) center. Interactions with calf thymus-DNA, monitored by circular dichroism (CD), indicated different effects modulated by the ligands. Finally, the cytotoxicity of each complex was tested toward different tumor cells, in comparison to cisplatin, and low values of IC50 in the range 0.6 to 4.0μM were obtained, after 24 or 48h incubation at 37°C. The obtained results indicate that such complexes can be promising alternative antitumor agents.
Collapse
Affiliation(s)
- Esther Escribano Aranda
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiago Araújo Matias
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Koiti Araki
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriana Pires Vieira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elaine Andrade de Mattos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carolina Portela Luz
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio Luiz Navarro Marques
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Kamath A, Mishra DK, Brahman D, Pilet G, Sinha B, Tamang A. Poly[diaquo(1,10-phenanthroline-κ2N1:N10)(μ2-sulphato-κ2O:O′)copper(ii)]: hydrothermal synthesis, crystal structure and magnetic properties. RSC Adv 2016. [DOI: 10.1039/c6ra03493d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Of late, hydrothermal synthesis has gained much interest in the synthesis of metal–organic hybrid complexes with fascinating architectures and topologies.
Collapse
Affiliation(s)
- Amarjit Kamath
- Department of Chemistry
- University of North Bengal
- Darjeeling-734013
- India
| | - Dipu Kumar Mishra
- Department of Chemistry
- University of North Bengal
- Darjeeling-734013
- India
| | - Dhiraj Brahman
- Department of Chemistry
- St. Joseph's College
- Darjeeling-734101
- India
| | - Guillaume Pilet
- Laboratoire des Multimatériaux et Interfaces
- UMR 5615 CNRS-Université Claude Bernard Lyon 1
- France
| | - Biswajit Sinha
- Department of Chemistry
- University of North Bengal
- Darjeeling-734013
- India
| | - Abiral Tamang
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| |
Collapse
|
22
|
Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: 'Copper That Cancer'. Metallomics 2015; 7:1459-76. [PMID: 26313539 DOI: 10.1039/c5mt00149h] [Citation(s) in RCA: 567] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.
Collapse
Affiliation(s)
- Delphine Denoyer
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | |
Collapse
|
23
|
Sanna D, Ugone V, Micera G, Pivetta T, Valletta E, Garribba E. Speciation of the Potential Antitumor Agent Vanadocene Dichloride in the Blood Plasma and Model Systems. Inorg Chem 2015; 54:8237-50. [DOI: 10.1021/acs.inorgchem.5b01277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica
e Farmacia and Centro Interdisciplinare per lo Sviluppo della Ricerca
Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Giovanni Micera
- Dipartimento di Chimica
e Farmacia and Centro Interdisciplinare per lo Sviluppo della Ricerca
Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Tiziana Pivetta
- Dipartimento di Scienze
Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Elisa Valletta
- Dipartimento di Scienze
Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica
e Farmacia and Centro Interdisciplinare per lo Sviluppo della Ricerca
Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|