1
|
Jiang T, Thielges MC, Feng C. Emerging approaches to investigating functional protein dynamics in modular redox enzymes: Nitric oxide synthase as a model system. J Biol Chem 2025; 301:108282. [PMID: 39929300 PMCID: PMC11929083 DOI: 10.1016/j.jbc.2025.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Approximately 80% of eukaryotic and 65% of prokaryotic proteins are composed of multiple folding units (i.e., domains) connected by flexible linkers. These dynamic protein architectures enable diverse, essential functions such as electron transfer, respiration, and biosynthesis. This review critically assesses recent advancements in methods for studying protein dynamics, with a particular focus on modular, multidomain nitric oxide synthase (NOS) enzymes. Moving beyond traditional static "snapshots" of protein structures, current research emphasizes the dynamic nature of proteins, viewing them as flexible architectures modulated by conformational changes and interactions. In this context, the review discusses key developments in the integration of quantitative crosslinking mass spectrometry (qXL MS) with AlphaFold 2 predictions, which provides a powerful approach to disentangling NOS structural dynamics and understanding their modulation by external regulatory cues. Additionally, advances in site-specific infrared (IR) spectroscopy offer exciting potential in providing rich details about the conformational dynamics of NOSs in docked states. Moreover, optimization of genetic code expansion machinery enables the generation of genuine phosphorylated NOS enzymes, paving the way for detailed biophysical and functional analyses of phosphorylation's role in shaping NOS activity and structural flexibility; notably, this approach also empowers site-specific IR probe labeling with cyano groups. By embracing and leveraging AI-driven tools like AlphaFold 2 for structural and conformational modeling, alongside solution-based biophysical methods such as qXL MS and site-specific IR spectroscopy, researchers will gain integrative insights into functional protein dynamics. Collectively, these breakthroughs highlight the transformative potential of modern approaches in driving fundamental biological chemistry research.
Collapse
Affiliation(s)
- Ting Jiang
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, USA
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, USA.
| |
Collapse
|
2
|
Han NN, Jin JA, Yang JH, Fan NS, Jin RC. Polystyrene nanoparticles regulate microbial stress response and cold adaptation in mainstream anammox process at low temperature. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135860. [PMID: 39298955 DOI: 10.1016/j.jhazmat.2024.135860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Nanoplastic pollution has become one of the most pressing environmental issues, and its bioaccumulation in aquatic environment also causes a great difficulty in treatment. Therefore, this work investigated the microbial dynamics of mainstream anaerobic ammonia oxidizing (anammox) process to treat the wastewater containing typical nanoplastics, as well as the fate and regulation mechanism of polystyrene nanoparticles (PS-NPs) with different concentrations. The results showed that 0.1-0.5 mg L-1 of PS-NPs had no significant effect on the nitrogen removal efficiency (NRE). When the concentration of PS-NPs increased from 0.5 mg L-1 to 2 mg L-1, the NRE of R1 with PS-NPs decreased from 94.9 ± 2.3 % to 77.0 ± 1.6 %, while the control reactor R0 maintained a stable NRE. Notably, the relative abundance of Ca. Kuenenia decreased from 17.4 % to 14.8 %, and that of Ca. Brocadia slightly decreased from 5.9 % to 5.0 % in R1. In addition, PS-NPs induced oxidative stress in anammox consortia, leading to the significant increase in reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as cell membrane damage. PS-NPs also downregulated the content of heme c and further inhibited anammox activity. Based on the molecular docking simulation and western blotting, cold shock proteins (CSPs) could bind to PS-NPs and reduce the performance of anammox processes at low temperatures.
Collapse
Affiliation(s)
- Na-Na Han
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing-Ao Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Astashkin AV, Gyawali YP, Jiang T, Zhang H, Feng C. Analyzing the FMN-heme interdomain docking interactions in neuronal and inducible NOS isoforms by pulsed EPR experiments and conformational distribution modeling. J Biol Inorg Chem 2024; 29:611-623. [PMID: 39136772 PMCID: PMC11390318 DOI: 10.1007/s00775-024-02068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024]
Abstract
Nitric oxide synthases (NOSs), a family of flavo-hemoproteins with relatively rigid domains linked by flexible regions, require optimal FMN domain docking to the heme domain for efficient interdomain electron transfer (IET). To probe the FMN-heme interdomain docking, the magnetic dipole interactions between the FMN semiquinone radical (FMNH•) and the low-spin ferric heme centers in oxygenase/FMN (oxyFMN) constructs of neuronal and inducible NOS (nNOS and iNOS, respectively) were measured using the relaxation-induced dipolar modulation enhancement (RIDME) technique. The FMNH• RIDME data were analyzed using the mesoscale Monte Carlo calculations of conformational distributions of NOS, which were improved to account for the native degrees of freedom of the amino acid residues constituting the flexible interdomain tethers. This combined computational and experimental analysis allowed for the estimation of the stabilization energies and populations of the docking complexes of calmodulin (CaM) and the FMN domain with the heme domain. Moreover, combining the five-pulse and scaled four-pulse RIDME data into a single trace has significantly reduced the uncertainty in the estimated docking probabilities. The obtained FMN-heme domain docking energies for nNOS and iNOS were similar (-3.8 kcal/mol), in agreement with the high degree of conservation of the FMN-heme domain docking interface between the NOS isoforms. In spite of the similar energetics, the FMN-heme domain docking probabilities in nNOS and iNOS oxyFMN were noticeably different (~ 0.19 and 0.23, respectively), likely due to differences in the lengths of the FMN-heme interdomain tethers and the docking interface topographies. The analysis based on the IET theory and RIDME experiments indicates that the variations in conformational dynamics may account for half of the difference in the FMN-heme IET rates between the two NOS isoforms.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Ting Jiang
- College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Haikun Zhang
- College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA.
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
Jiang T, Wan G, Zhang H, Gyawali YP, Underbakke ES, Feng C. Mapping the Intersubunit Interdomain FMN-Heme Interactions in Neuronal Nitric Oxide Synthase by Targeted Quantitative Cross-Linking Mass Spectrometry. Biochemistry 2024; 63:1395-1411. [PMID: 38747545 PMCID: PMC11893013 DOI: 10.1021/acs.biochem.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nitric oxide synthase (NOS) in mammals is a family of multidomain proteins in which interdomain electron transfer (IET) is controlled by domain-domain interactions. Calmodulin (CaM) binds to the canonical CaM-binding site in the linker region between the FMN and heme domains of NOS and allows tethered FMN domain motions, enabling an intersubunit FMN-heme IET in the output state for NO production. Our previous cross-linking mass spectrometric (XL MS) results demonstrated site-specific protein dynamics in the CaM-responsive regions of rat neuronal NOS (nNOS) reductase construct, a monomeric protein [Jiang et al., Biochemistry, 2023, 62, 2232-2237]. In this work, we have extended our combined approach of XL MS structural mapping and AlphaFold structural prediction to examine the homodimeric nNOS oxygenase/FMN (oxyFMN) construct, an established model of the NOS output state. We employed parallel reaction monitoring (PRM) based quantitative XL MS (qXL MS) to assess the CaM-induced changes in interdomain dynamics and interactions. Intersubunit cross-links were identified by mapping the cross-links onto top AlphaFold structural models, which was complemented by comparing their relative abundances in the cross-linked dimeric and monomeric bands. Furthermore, contrasting the CaM-free and CaM-bound nNOS samples shows that CaM enables the formation of the intersubunit FMN-heme docking complex and that CaM binding induces extensive, allosteric conformational changes across the NOS regions. Moreover, the observed cross-links sites specifically respond to changes in ionic strength. This indicates that interdomain salt bridges are responsible for stabilizing and orienting the output state for efficient FMN-heme IET. Taken together, our targeted qXL MS results have revealed that CaM and ionic strength modulate specific dynamic changes in the CaM/FMN/heme complexes, particularly in the context of intersubunit interdomain FMN-heme interactions.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Guanghua Wan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yadav Prasad Gyawali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
5
|
Zheng H, Li J, Feng C. Heat shock protein 90 enhances the electron transfer between the FMN and heme cofactors in neuronal nitric oxide synthase. FEBS Lett 2020; 594:2904-2913. [PMID: 32573772 DOI: 10.1002/1873-3468.13870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 11/05/2022]
Abstract
Heat shock protein 90 (Hsp90) is a key regulator of nitric oxide synthase (NOS) in vivo. Despite its functional importance, little is known about the underlying molecular mechanism. Here, purified dimeric human Hsp90α was used to investigate whether (and if so, how) Hsp90 affects the FMN-heme interdomain electron transfer (IET) step in NOS. Hsp90α increases the IET rate for rat neuronal NOS (nNOS) in a dose-saturable manner, and a single charge-neutralization mutation at conserved Hsp90 K585 abolishes the effect. The kinetic results with added Ficoll 70, a crowder, further indicate that Hsp90 enhances the FMN-heme IET through specific association with nNOS. The Hsp90-nNOS docking models provide hints on the putative role of Hsp90 in constraining the available conformational space for the FMN domain motions.
Collapse
Affiliation(s)
- Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Jinghui Li
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
6
|
Astashkin AV, Li J, Zheng H, Feng C. Positional Distributions of the Tethered Modules in Nitric Oxide Synthase: Monte Carlo Calculations and Pulsed EPR Measurements. J Phys Chem A 2019; 123:7075-7086. [PMID: 31310526 DOI: 10.1021/acs.jpca.9b05388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitric oxide synthase (NOS) enzyme consists of multiple domains connected by flexible random coil tethers. In a catalytic cycle, the NOS domains move within the limits determined by the length and flexibility of the interdomain tethers and form docking complexes with each other. This process represents a key component of the electron transport from the flavin adenine dinucleotide/reduced nicotinamide adenine dinucleotide phosphate binding domain to the catalytic heme centers located in the oxygenase domain. Studying the conformational behavior of NOS is therefore imperative for a full understanding of the overall catalytic mechanism. In this work, we have investigated the equilibrium positional distributions of the NOS domains and the bound calmodulin (CaM) by using Monte Carlo calculations of the NOS conformations. As a main experimental reference, we have used the magnetic dipole interaction between a bifunctional spin label attached to T34C/S38C mutant CaM and the NOS heme centers, which was measured by pulsed electron paramagnetic resonance. In general, the calculations of the conformational distributions allow one to determine the range and statistics of positions occupied by the tethered protein domains, assess the crowding effect of the multiple domains on each other, evaluate the accessibility of various potential domain docking sites, and estimate the interaction energies required to achieve target populations of the docked states. In the particular application described here, we have established the specific mechanisms by which the bound CaM facilitates the flavin mononucleotide (FMN)/heme interdomain docking in NOS. We have also shown that the intersubunit FMN/heme domain docking and electron transfer in the homodimeric NOS protein are dictated by the existing structural makeup of the protein. Finally, from comparison of the calculated and experimental docking probabilities, the characteristic stabilization energies for the CaM/heme domain and the FMN domain/heme domain docking complexes have been estimated as -4.5kT and -10.5kT, respectively.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | | | | | | |
Collapse
|
7
|
Li J, Zheng H, Feng C. Effect of Macromolecular Crowding on the FMN-Heme Intraprotein Electron Transfer in Inducible NO Synthase. Biochemistry 2019; 58:3087-3096. [PMID: 31251033 DOI: 10.1021/acs.biochem.9b00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous biochemical studies of nitric oxide synthase enzymes (NOSs) were conducted in diluted solutions. However, the intracellular milieu where the proteins perform their biological functions is crowded with macromolecules. The effect of crowding on the electron transfer kinetics of multidomain proteins is much less understood. Herein, we investigated the effect of macromolecular crowding on the FMN-heme intraprotein interdomain electron transfer (IET), an obligatory step in NOS catalysis. A noticeable increase in the IET rate in the bidomain oxygenase/FMN (oxyFMN) and the holoprotein of human inducible NOS (iNOS) was observed upon addition of Ficoll 70 in a nonsaturable manner. Additionally, the magnitude of IET enhancement for the holoenzyme is much higher than that that of the oxyFMN construct. The crowding effect is also evident at different ionic strengths. Importantly, the enhancing extent is similar for the iNOS oxyFMN protein with added Ficoll 70 and Dextran 70 that give the same solution viscosity, showing that specific interactions do not exist between the NOS protein and the crowder. Moreover, the population of the docked FMN-heme state is significantly increased upon addition of Ficoll 70 and the fluorescence lifetime values do not correspond to those in the absence of Ficoll 70. The steady-state cytochrome c reduction by the holoenzyme is noticeably enhanced by the crowder, while the ferricyanide reduction is unchanged. The NO production activity of the iNOS holoenzyme is stimulated by Ficoll 70. The effect of macromolecular crowding on the kinetics can be rationalized on the basis of the excluded volume effect, with an entropic origin. The intraprotein electron transfer kinetics, fluorescence lifetime, and steady-state enzymatic activity results indicate that macromolecular crowding modulates the NOS electron transfer through multiple pathways. Such a mechanism should be applicable to electron transfer in other multidomain redox proteins.
Collapse
Affiliation(s)
- Jinghui Li
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Huayu Zheng
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States.,Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Changjian Feng
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States.,Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
8
|
Generation and characterization of functional phosphoserine-incorporated neuronal nitric oxide synthase holoenzyme. J Biol Inorg Chem 2018; 24:1-9. [PMID: 30315355 DOI: 10.1007/s00775-018-1621-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Phosphorylation is an important pathway for the regulation of nitric oxide synthase (NOS) at the posttranslational level. However, the molecular underpinnings of NOS regulation by phosphorylations remain unclear to date, mainly because of the problems in making a good amount of active phospho-NOS proteins. Herein, we have established a system in which recombinant rat nNOS holoprotein can be produced with site-specific incorporation of phosphoserine (pSer) at residue 1412, using a specialized bacterial host strain for pSer incorporation. The pSer1412 nNOS protein demonstrates UV-Vis, far-UV CD and fluorescence spectral properties that are identical to those of nNOS overexpressed in other bacterial strains. The protein is also functional, possessing normal NO production and NADPH oxidation activities in the presence of abundant substrate L-Arg. Conversely, the rate of FMN-heme interdomain electron transfer (IET) in pSer1412 nNOS is considerably lower than that of wild-type (wt) nNOS, while the phosphomimetic S1142E mutant possesses similar electron transfer kinetics to that of wt. The successful incorporation and high yield of pSer1412 into rat nNOS and the significant change in the IET kinetics upon the phosphorylation demonstrate a highly useful method for incorporating native phosphorylation sites as a substantial improvement to commonly used phosphomimetics.
Collapse
|
9
|
Li J, Zheng H, Wang W, Miao Y, Sheng Y, Feng C. Role of an isoform-specific residue at the calmodulin-heme (NO synthase) interface in the FMN - heme electron transfer. FEBS Lett 2018; 592:2425-2431. [PMID: 29904908 DOI: 10.1002/1873-3468.13158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022]
Abstract
The interface between calmodulin (CaM) and the NO synthase (NOS) heme domain is the least characterized interprotein interface that the NOS isoforms must traverse through during catalysis. Our previous molecular dynamics simulations predicted a salt bridge between K497 in human inducible NOS (iNOS) heme domain and D118(CaM). Herein, the FMN - heme interdomain electron transfer (IET) rate was found to be notably decreased by charge-reversal mutation, while the IET in the iNOS K497D mutant is significantly restored by the CaM D118K mutation. The results of wild-type protein with added synthetic peptides further demonstrate the critical nature of K497 relative to the rest of the peptide sequence in modulating the IET. These data provide definitive evidence supporting the regulatory role of the isoform-specific K497 residue.
Collapse
Affiliation(s)
- Jinghui Li
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Wei Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Yinghong Sheng
- Department of Chemistry & Physics, College of Arts & Sciences, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|