1
|
Woźniczka M, Sutradhar M, Chmiela M, Gonciarz W, Pająk M. Equilibria in the aqueous system of cobalt(II) based on 2-picolinehydroxamic acid and N-(2-hydroxybenzyl)phenylalanine and its ability to inhibit the propagation of cancer cells. J Inorg Biochem 2023; 249:112389. [PMID: 37806005 DOI: 10.1016/j.jinorgbio.2023.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Mixed-ligand complexes of cobalt(II) with two bioligands, viz. 2-picolinehydroxamic acid and the reduced Schiff base N-(2-hydroxybenzyl)phenylalanine, were studied in aqueous solution by potentiometry and UV-Vis spectroscopic analysis. The coordination mode of the complexes and their stability were determined and compared to their parent species. Stacking interactions between the rings present in the ligands influence the stability of the complexes. Also, UV-Vis spectroscopy revealed that the stacking interactions affected the intercalation of DNA and mixed-ligand complexes. The in vitro anticancer activity of the free ligand 2-picolinehydroxamic acid and the complexes was tested against cervical and gastric human adenocarcinoma epithelial cell lines. At concentrations of 0.06 and 0.11 mM, the mixed-ligand structures showed the ability to reduce gastric cancer cells with no inhibitory effect on mouse fibroblasts. The cytotoxic effect was accompanied by damage to the cell nuclei, which may confirm that the complexes demonstrate effective binding to DNA. No determination of minimal inhibitory and bactericidal/fungicidal concentrations against the test organisms was possible at higher complex concentrations due to precipitation.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Manas Sutradhar
- Faculdade de Engenharia, Universidade Lusófona - Centro Universitário de Lisboa, Campo Grande 376, Lisboa 1749-024, Portugal; Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
2
|
Woźniczka M, Świątek M, Sutradhar M, Gądek-Sobczyńska J, Chmiela M, Gonciarz W, Pasternak B, Pająk M. Equilibria of complexes in the aqueous cobalt(II)- N-(2-hydroxybenzyl)phenylalanine system and their biological activity compared to analogous Schiff base structures. Comput Struct Biotechnol J 2023; 21:1312-1323. [PMID: 36814724 PMCID: PMC9939546 DOI: 10.1016/j.csbj.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Due to their excellent prospects in biological applications, Schiff bases and their complexes are a source of continuing interest. The present study examines the formation of four cobalt(II) complexes with the reduced Schiff base N-(2-hydroxybenzyl)phenylalanine (PhAlaSal) in alkaline aqueous solution by pH-metry. UV-Vis and ESI-MS studies confirmed the model of proposed species. Kinetic analysis indicated that the single- and bi-ligand cobalt(II) complexes transitioned from octahedral to tetrahedral structures. The Schiff base and its complexes detected under physiological pH were tested for antimicrobial abilities and compared with analogous structures of the Schiff base derivative, N-(2-hydroxybenzyl)alanine (AlaSal). The ability of these structures to influence cell growth was tested on L929 mouse fibroblasts and on cervix and gastric adenocarcinoma cancer cell lines. N-(2-hydroxybenzyl)phenylalanine demonstrates greater antimicrobial efficacy than N-(2-hydroxybenzyl)alanine but also higher cytotoxicity; however, it is nonetheless effective against cancer cells. In turn, AlaSal demonstrates low cytotoxicity for fibroblasts and high cytotoxicity for gastric adenocarcinoma epithelial cells at bacteriostatic concentration for Helicobacter pylori and Candida strains. The presence of these microorganisms in the gastric milieu supports the development of gastritis and gastric cancer; AlaSal therapy may be simultaneously effective against both. Due to their cytotoxicity, Schiff base complexes are not suitable for use against fungal and bacterial infections, but may effectively prevent cancer cell growth. Data availability Data will be made available on request.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland,Corresponding author.
| | - Mirosława Świątek
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Manas Sutradhar
- Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, Lisboa 1749-024, Portugal,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joanna Gądek-Sobczyńska
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Beata Pasternak
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
3
|
Woźniczka M, Lichawska M, Sutradhar M, Chmiela M, Gonciarz W, Pająk M. Chemical Characterization and Biological Evaluation of New Cobalt(II) Complexes with Bioactive Ligands, 2-Picolinehydroxamic Acid and Reduced Schiff Base N-(2-Hydroxybenzyl)alanine, in Terms of DNA Binding and Antimicrobial Activity. Pharmaceuticals (Basel) 2021; 14:ph14121254. [PMID: 34959656 PMCID: PMC8706952 DOI: 10.3390/ph14121254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Five new heteroligand cobalt(II) complexes with 2-picolinehydroxamic acid and reduced Schiff base, N-(2-hydroxybenzyl)alanine, were formed in an aqueous solution over a wide pH range. The coordination properties of ligands towards the metal ion were determined using a pH-metric method, and then the speciation model was confirmed by UV–Vis studies. A stacking interaction between the Schiff base phenol ring and the 2-picolinehydroxamic acid pyridine ring was found to improve the stability of the heteroligand species, indicating more effective coordination in mixed-ligand complexes than in their respective binary systems. The antimicrobial properties of heteroligand complexes were determined against Gram-negative and Gram-positive bacteria, as well as fungal strains. The formulation demonstrated the highest bacteriostatic and bactericidal activity (3.65 mM) against two strains of Gram-negative Helicobacter pylori bacteria and towards Candida albicans and Candida glabrata; this is important due to the potential co-existence of these microorganisms in the gastric milieu and their role in the development of gastritis. The binary complexes in the cobalt(II)—2-picolinehydroxamic acid system and 2-picolinehydroxamic acid were not cytotoxic against L929 mouse fibroblasts, neither freshly prepared solutions or after two weeks’ storage. By comparison, the heteroligand complexes within the range 0.91–3.65 mM diminished the metabolic activity of L929 cells, which was correlated with increased damage to cell nuclei. The concentration of the heteroligand species increased over time; therefore, the complexes stored for two weeks exhibited stronger anticellular toxicity than the freshly prepared samples. The complexes formed in an aqueous solution under physiological pH effectively bound to calf thymus DNA in an intercalative manner. This DNA-binding ability may underpin the antimicrobial/antifungal activity of the heteroligand complexes and their ability to downregulate the growth of eukaryotic cells.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.L.); (M.P.)
- Correspondence:
| | - Marta Lichawska
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.L.); (M.P.)
| | - Manas Sutradhar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.C.); (W.G.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.C.); (W.G.)
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.L.); (M.P.)
| |
Collapse
|
4
|
Woźniczka M, Sutradhar M, Pombeiro AJL, Świątek M, Pająk M, Gądek-Sobczyńska J, Chmiela M, Gonciarz W, Pasternak B, Kufelnicki A. Equilibria in Aqueous Cobalt(II)-Reduced Schiff Base N-(2-hydroxybenzyl)alanine System: Chemical Characterization, Kinetic Analysis, Antimicrobial and Cytotoxic Properties. Molecules 2020; 25:molecules25153462. [PMID: 32751474 PMCID: PMC7436002 DOI: 10.3390/molecules25153462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
The present study describes the coordination properties of a reduced Schiff base, N-(2-hydroxybenzyl)alanine, towards cobalt(II) using potentiometric as well as spectroscopic (UV-Vis and ESI-MS) methods. The results indicate the formation of six mononuclear complexes showing high stability in aqueous solution. Coordination occurs in the {O−phenolic,N,O−carboxyl} and {N,O−carboxyl} chelation modes, depending on the degree of ligand deprotonation. Examination of the complexation equilibria at pH ca 7, which is important from a biological point of view, allowed to identify two species: [CoL] and [CoL2H]−. The kinetic analysis showed a structural change of those cobalt(II) complexes from octahedral to tetrahedral in accordance with a first-order time relationship. The antimicrobial properties of N-(2-hydroxybenzyl)alanine, cobalt(II) nitrate and of the Co(II) – ligand complexes were determined against Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis), Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Helicobacter pylori) and a fungal strain (Candida). The results indicate that the complexes are more active for more strains than the ligand alone. Nevertheless, the complexes induce a higher decrease in the metabolic activity of cells but without damage to nuclei. Tetrahedral structures show stronger anti-cellular toxicity than octahedral complexes, which is most likely due to the higher accessibility of the cobalt(II) center.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.Ś.); (M.P.); (J.G.-S.); (A.K.)
- Correspondence:
| | - Manas Sutradhar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (M.S.); (A.J.L.P.)
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (M.S.); (A.J.L.P.)
| | - Mirosława Świątek
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.Ś.); (M.P.); (J.G.-S.); (A.K.)
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.Ś.); (M.P.); (J.G.-S.); (A.K.)
| | - Joanna Gądek-Sobczyńska
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.Ś.); (M.P.); (J.G.-S.); (A.K.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.C.); (W.G.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.C.); (W.G.)
| | - Beata Pasternak
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| | - Aleksander Kufelnicki
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.Ś.); (M.P.); (J.G.-S.); (A.K.)
| |
Collapse
|
5
|
Recent Studies on the Antimicrobial Activity of Transition Metal Complexes of Groups 6–12. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2020026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial resistance is an increasingly serious threat to global public health that requires innovative solutions to counteract new resistance mechanisms emerging and spreading globally in infectious pathogens. Classic organic antibiotics are rapidly exhausting the structural variations available for an effective antimicrobial drug and new compounds emerging from the industrial pharmaceutical pipeline will likely have a short-term and limited impact before the pathogens can adapt. Inorganic and organometallic complexes offer the opportunity to discover and develop new active antimicrobial agents by exploiting their wide range of three-dimensional geometries and virtually infinite design possibilities that can affect their substitution kinetics, charge, lipophilicity, biological targets and modes of action. This review describes recent studies on the antimicrobial activity of transition metal complexes of groups 6–12. It focuses on the effectiveness of the metal complexes in relation to the rich structural chemical variations of the same. The aim is to provide a short vade mecum for the readers interested in the subject that can complement other reviews.
Collapse
|
6
|
Ostrowska M, Toporivska Y, Golenya IA, Shova S, Fritsky IO, Pecoraro VL, Gumienna-Kontecka E. Explaining How α-Hydroxamate Ligands Control the Formation of Cu(II)-, Ni(II)-, and Zn(II)-Containing Metallacrowns. Inorg Chem 2019; 58:16642-16659. [DOI: 10.1021/acs.inorgchem.9b02724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Irina A. Golenya
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kiev, Ukraine
| | - Sergiu Shova
- “Poni Petru” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Igor O. Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kiev, Ukraine
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
7
|
Conformational rearrangements of G-quadruplex topology promoted by Cu(II) 12-MC Cu(II)PyrAcHA-4 metallacrown. Int J Biol Macromol 2019; 156:1258-1269. [PMID: 31759020 DOI: 10.1016/j.ijbiomac.2019.11.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
Cu(II) 12-MCCu(II)PyrAcHA-4 metallacrown was studied by several spectroscopic techniques as an interacting ligand with G-quadruplex DNA structures. Investigations were performed on oligonucleotides bearing human telomeric and protooncogenic c-myc sequences in buffered solution mimicking ionic conditions in cellular environment. The planar square-based Cu(II) 12-MC-4 metallacrown interacts with GQ via an end-stacking mode with 1:1 stoichiometry. Circular dichroism (CD) titration revealed capability of this metallacrown to induce transformation of the GQ hybrid topology into the parallel form. Thermal melting experiment indicated higher thermal stability of both antiparallel (ΔTm = +15 °C) and parallel (ΔTm = ≥27 °C) G-quadruplexes in the presence of Cu (II) 12-MC-4. Indirect GQ FID assay let to determine high binding affinity of the Cu(II) 12-MC-4 to antiparallel 22Htel/Na+ GQ (KMC = 3.9 (±0.4) x 106 M-1). Comparing with lower binding constants previously reported for Ln (III) 15-MC-5 and Sm (III) 12-MC-4, one can conclude that the square planar geometry and the positive charge of metallacrown play an important role in MC/GQ interactions.
Collapse
|
8
|
Sennappan M, Murali Krishna P, Hari Krishna R. Facile synthesis, characterization, nucleic acid interaction and photoluminescent properties of (E)-furan-2-yl(2-(2-hydroxybenzylidene)hydrazinyl) methaniminium and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Tarushi A, Zampakou M, Perontsis S, Lafazanis K, Pantazaki AA, Hatzidimitriou AG, Geromichalos GD, Psomas G. Manganese(II) complexes of tolfenamic acid or naproxen in polymeric structures or encapsulated in [15-MC-5] manganese(III) metallacrowns: Structure and biological activity. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|