1
|
de Melo APL, Martins BB, Bresolin L, Tirloni B, de Oliveira AB. Synthesis, crystal structure and Hirshfeld analysis of trans-bis-{(2 E)- N-phenyl-2-[(2 E)-3-phenyl-2-propen-1-yl-idene]hydrazinecarbo-thio-amidato-κ 2N1, S}palladium(II). Acta Crystallogr E Crystallogr Commun 2023; 79:993-998. [PMID: 37936860 PMCID: PMC10626968 DOI: 10.1107/s2056989023008654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
The reaction of (2E)-N-phenyl-2-[(2E)-3-phenyl-2-propen-1-yl-idene]hydra-zine-carbo-thio-amide (common name: cinnamaldehyde-4-phenyl-thio-semi-carbazone) deprotonated with NaOH in ethanol with an ethano-lic suspension of PdII chloride in a 2:1 molar ratio yielded the title compound, [Pd(C16H14N3S)2]. The anionic ligands act as metal chelators, κ2 N 1 S-donors, forming five-membered rings with a trans-configuration. The PdII ion is fourfold coordinated in a slightly distorted square-planar geometry. For each ligand, one H⋯S and one H⋯N intra-molecular inter-actions are observed, with S(5) and S(6) graph-set motifs. Concerning the H⋯S inter-actions, the coordination sphere resembles a hydrogen-bonded macrocyclic environment-type. In the crystal, the complexes are linked via pairs of H⋯S inter-actions, with graph-set motif R 2 2(8), and building a mono-periodic hydrogen-bonded ribbon along [001]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are: H⋯H (45.3%), H⋯C/C⋯H (28.0%), H⋯S/S⋯H (8.0%) and H⋯N/N⋯H (7.4%).
Collapse
Affiliation(s)
- Ana Paula Lopes de Melo
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Bianca Barreto Martins
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Leandro Bresolin
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Bárbara Tirloni
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima s/n, Campus Universitário, 97105-900 Santa Maria-RS, Brazil
| | - Adriano Bof de Oliveira
- Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil
| |
Collapse
|
2
|
de Melo APL, Flores AFC, Bresolin L, Tirloni B, de Oliveira AB. 2-{1-[(6 R, S)-3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetra-hydro-naphthalen-2-yl]ethyl-idene}- N-methyl-hydrazinecarbo-thioamide. IUCRDATA 2023; 8:x231020. [PMID: 38313070 PMCID: PMC10833131 DOI: 10.1107/s2414314623010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 02/06/2024] Open
Abstract
The reaction between a racemic mixture of (R,S)-fixolide and 4-methyl-thio-semicarbazide in ethanol with a 1:1 stoichiometric ratio and catalysed with HCl, yielded the title compound, C20H31N3S [common name: (R,S)-fixolide 4-methyl-thio-semicarbazone]. There is one crystallographically independent mol-ecule in the asymmetric unit, which is disordered over the aliphatic ring [site-occupancy ratio = 0.667 (13):0.333 (13)]. The disorder includes the chiral C atom, the neighbouring methyl-ene group and the methyl H atoms of the methyl group bonded to the chiral C atom. The maximum deviations from the mean plane through the disordered aliphatic ring amount to 0.328 (6) and -0.334 (6) Å [r.m.s.d. = 0.2061 Å], and -0.3677 (12) and 0.3380 (12) Å [r.m.s.d. = 0.2198 Å] for the two different sites. Both fragments show a half-chair conformation. Additionally, the N-N-C(=S)-N entity is approximately planar, with the maximum deviation from the mean plane through the selected atoms being 0.0135 (18) Å [r.m.s.d. = 0.0100 Å]. The mol-ecule is not planar due to the dihedral angle between the thio-semicarbazone entity and the aromatic ring, which amounts to 51.8 (1)°, and due to the sp 3-hybridized carbon atoms of the fixolide fragment. In the crystal, the mol-ecules are connected by H⋯S inter-actions with graph-set motif C(4), forming a mono-periodic hydrogen-bonded ribbon along [100]. The Hirshfeld surface analysis suggests that the major contributions for the crystal cohesion are [(R,S)-isomers considered separately] H⋯H (75.7%), H⋯S/S⋯H (11.6%), H⋯C/C⋯H (8.3% and H⋯N/N⋯H (4.4% for both of them).
Collapse
Affiliation(s)
- Ana Paula Lopes de Melo
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Alex Fabiani Claro Flores
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Leandro Bresolin
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Bárbara Tirloni
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Universitário, 97105-900 Santa Maria-RS, Brazil
| | - Adriano Bof de Oliveira
- Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil
| |
Collapse
|
3
|
Zanetti RD, da Cunha GA, Moreira MB, Farias RL, de Souza RF, de Godoy PR, Brassesco MS, Rocha FV, Lima MA, Mauro AE, Netto AV. Orthopalladated N,N-Dimethyl-1-Phenethylamine Compounds Containing 2,6-Lutidine: Synthesis, Dna Binding Studies and Cytotoxicity Evaluation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Kaya Y, Erçağ A, Zorlu Y, Demir Y, Gülçin İ. New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J Biol Inorg Chem 2022; 27:271-281. [PMID: 35175415 DOI: 10.1007/s00775-022-01932-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Pd(II) complexes (Pd1, Pd2, and Pd3) were synthesized for the first time using asymmetric isatin bisthiocarbohydrazone ligands and PdCl2(PPh3)2. All complexes were characterized by a range of spectroscopic and analytical techniques. The molecular structures of Pd1 and Pd3 have been determined by single-crystal X-ray diffraction analysis. The complexes are diamagnetic and exhibit square planar geometry. The asymmetric isatin bisthiocarbohydrazone ligands coordinate to Pd(II) ion in a tridentate manner, through the phenolic oxygen, imine nitrogen and thiol sulfur, forming five- and six-membered chelate rings within their structures. The fourth coordination site in these complexes is occupied by PPh3 (triphenylphosphine). The free ligands and their Pd(II) complexes were evaluated for their carbonic anhydrase I, II (hCAs) and acetylcholinesterase (AChE) inhibitor activities. They showed a highly potent inhibition effect on AChE and hCAs. Ki values are in the range of 9 ± 0.6 - 30 ± 5.4 nM for AChE, 7 ± 0.5 - 16 ± 2.2 nM for hCA I and 3 ± 0.3-24 ± 1.9 nM for hCA II isoenzyme. The results clearly demonstrated that the ligands and their Pd(II) complexes effectively inhibited the used enzymes.
Collapse
Affiliation(s)
- Yeliz Kaya
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey
| | - Ayşe Erçağ
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey.
| | - Yunus Zorlu
- Faculty of Science, Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational School, Ardahan University, 75700, Ardahan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25400, Erzurum, Turkey
| |
Collapse
|
6
|
Orthopalladated tetralone oxime compounds bearing tertiary phosphines: Synthesis, structure, biological and in silico studies. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Bezerra França S, Carine Barros de Lima L, Rychard da Silva Cunha C, Santos Anunciação D, Ferreira da Silva-Júnior E, Ester de Sá Barreto Barros M, José da Paz Lima D. Larvicidal activity and in silico studies of cinnamic acid derivatives against Aedes aegypti (Diptera: Culicidae). Bioorg Med Chem 2021; 44:116299. [PMID: 34225166 DOI: 10.1016/j.bmc.2021.116299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
Cinnamic acid derivatives (CAD's) represent a great alternative in the search for insecticides against Aedes aegypti mosquitoes since they have antimicrobial and insecticide properties. Ae. aegypti is responsible for transmitting Dengue, Chikungunya, and Zika viruses, among other arboviruses associated with morbimortality, especially in developing countries. In view of this, in vitro analyses of n-substituted cinnamic acids and esters were performed upon 4th instar larvae (L4) of Ae. aegypti, as well as, molecular docking studies to propose a potential biological target towards this mosquitoes species. The larvicide assays proved that n-substituted ethyl cinnamates showed a more pronounced activity than their corresponding acids, in which p-chlorocinnamate (3j) presented a LC50 value of 8.3 µg/mL. Thusly, external morphologic alterations (rigid and elongated body, curved bowel, and translucent or darkened anal papillae) of mosquitoes' group exposed to compound 3j, were observed by microscopy. In addition, an analytical method was developed for the quantification of the most promising analog by using high-performance liquid chromatography with UV detection (HPLC-UV). Molecular docking studies suggested that the larvicide action is associated with inhibition of acetylcholinesterase (AChE) enzyme. Therefore, expanding the larvicidal study with the cinnamic acid derivatives against the vector Ae. aegypti is important for finding search for more effective larvicides and with lower toxicity, since they have already shown good larvicidal properties against Ae. aegypti.
Collapse
Affiliation(s)
- Saraliny Bezerra França
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Luana Carine Barros de Lima
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Cristhyan Rychard da Silva Cunha
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Daniela Santos Anunciação
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Maria Ester de Sá Barreto Barros
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil
| | - Dimas José da Paz Lima
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, 57072-970 Maceio, AL, Brazil.
| |
Collapse
|
8
|
Farias RL, Polez AMR, Silva DES, Zanetti RD, Moreira MB, Batista VS, Reis BL, Nascimento-Júnior NM, Rocha FV, Lima MA, Oliveira AB, Ellena J, Scarim CB, Zambom CR, Brito LD, Garrido SS, Melo APL, Bresolin L, Tirloni B, Pereira JCM, Netto AVG. In vitro and in silico assessment of antitumor properties and biomolecular binding studies for two new complexes based on Ni II bearing k 2N,S-donor ligands. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111815. [PMID: 33579459 DOI: 10.1016/j.msec.2020.111815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 12/30/2022]
Abstract
This work deals with two new molecule-based materials, namely NiII-complexes of general formulae [Ni(L1)2] (Ni1) and [Ni(L2)2] (Ni2), where L1 = trans-cinnamaldehyde-N(4)-methyl thiosemicarbazone and L2 = trans-cinnamaldehyde-N(4)-ethyl thiosemicarbazone, as potential antitumor agents. Both compounds were characterized by elemental analysis, molar conductivity and spectroscopic techniques (FTIR and NMR). Their molecular structures were obtained by single-crystal X-ray diffraction analysis. Each one crystallizes in a monoclinic space group P 21/c, also the asymmetric unit comprises of one NiII ion located on an inversion centre and one anionic ligand, which acts as a κ2N,S-donor affording a five-membered metallaring. The compounds were screened against two selected tumour cell lines (MCF-7 and A549) and non-tumour fibroblasts cell line (MRC-5) via MTT assays. In both tumour cells, all compounds exhibited higher cytotoxicity than the control drug (cisplatin). The IC50 values ranges of 3.70 - 41.37 μM and 1.06 - 14.91 μM were found for MCF-7 and A549, respectively. Importantly, all of them were less toxicity than cisplatin in MRC-5 with SI values ranged at 11.80 - 86.60. The red blood cell (RBC) assay revealed Ni2 as non-toxic due to its reduced haemolytic effect (0--9% at 1--10 μM). The DNA binding was investigated through a combination of spectrophotometric absorption and emission titrations, electrophoresis, and circular dichroism experiments. As a result, these metal complexes were not able to strongly binding to DNA (Kb values ~104 mol L--1) but suggesting groove-binding interactions. The scavenging ability of them towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical was also evaluated in this work, but no important antioxidant behaviour was detected. Further, the interaction of Ni1 and Ni2 to human serum albumin (HSA) was explored by quenching of tryptophan emission, warfarin competitive assay, and molecular docking protocols. The HSA binding analyses indicated good affinity of both complexes to Sudlow site I (Kb values ⁓103 mol L-1).
Collapse
Affiliation(s)
- R L Farias
- Univ. Estadual Paulista (Unesp), Instituto de Química, Departamento de Química Analítica, Físico-Química e Inorgânica, Araraquara, Brazil.
| | - A M R Polez
- Univ. Estadual Paulista (Unesp), Instituto de Química, Departamento de Química Analítica, Físico-Química e Inorgânica, Araraquara, Brazil
| | - D E S Silva
- Univ. Estadual Paulista (Unesp), Instituto de Química, Departamento de Química Analítica, Físico-Química e Inorgânica, Araraquara, Brazil
| | - R D Zanetti
- Univ. Estadual Paulista (Unesp), Instituto de Química, Departamento de Química Analítica, Físico-Química e Inorgânica, Araraquara, Brazil
| | - M B Moreira
- Univ. Estadual Paulista (Unesp), Instituto de Química, Departamento de Química Analítica, Físico-Química e Inorgânica, Araraquara, Brazil; Univ. Estadual de Londrina (UEL), Departamento de Química, Londrina, Brazil
| | - V S Batista
- Univ. Estadual Paulista (Unesp), Instituto de Química, Laboratório de Química Medicinal, Síntese Orgânica e Modelagem Molecular (LaQMedSOMM), Araraquara, Brazil
| | - B L Reis
- Univ. Estadual Paulista (Unesp), Instituto de Química, Laboratório de Química Medicinal, Síntese Orgânica e Modelagem Molecular (LaQMedSOMM), Araraquara, Brazil; Technische Universität Dresden (TUD), Department of Chemistry and Food Chemistry, Dresden, Germany
| | - N M Nascimento-Júnior
- Univ. Estadual Paulista (Unesp), Instituto de Química, Laboratório de Química Medicinal, Síntese Orgânica e Modelagem Molecular (LaQMedSOMM), Araraquara, Brazil
| | - F V Rocha
- Univ. Federal de São Carlos (UFSCar), Departamento de Química, São Carlos, Brazil
| | - M A Lima
- Univ. Federal de São Carlos (UFSCar), Departamento de Química, São Carlos, Brazil
| | - A B Oliveira
- Univ. Federal de Sergipe (UFS), Departamento de Química, São Cristóvão, Brazil
| | - J Ellena
- Univ. de São Paulo (USP), Instituto de Física de São Carlos, São Carlos, Brazil
| | - C B Scarim
- Univ. Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara, Brazil
| | - C R Zambom
- Univ. Estadual Paulista (Unesp), Instituto de Química, Departamento de Bioquímica e Química Orgânica, Araraquara, Brazil
| | - L D Brito
- Univ. Estadual Paulista (Unesp), Instituto de Química, Departamento de Bioquímica e Química Orgânica, Araraquara, Brazil
| | - S S Garrido
- Univ. Estadual Paulista (Unesp), Instituto de Química, Departamento de Bioquímica e Química Orgânica, Araraquara, Brazil
| | - A P L Melo
- Univ. Federal do Rio Grande (FURG), Escola de Química e Alimentos, Rio Grande, Brazil
| | - L Bresolin
- Univ. Federal do Rio Grande (FURG), Escola de Química e Alimentos, Rio Grande, Brazil
| | - B Tirloni
- Univ. Federal de Santa Maria (UFSM), Departamento de Química, Santa Maria, Brazil
| | - J C M Pereira
- Univ. Estadual Paulista (Unesp), Instituto de Química, Departamento de Química Analítica, Físico-Química e Inorgânica, Araraquara, Brazil
| | - A V G Netto
- Univ. Estadual Paulista (Unesp), Instituto de Química, Departamento de Química Analítica, Físico-Química e Inorgânica, Araraquara, Brazil
| |
Collapse
|
9
|
Silva DES, Becceneri AB, Santiago JVB, Gomes Neto JA, Ellena J, Cominetti MR, Pereira JCM, Hannon MJ, Netto AVG. Silver(I) complexes of 3-methoxy-4-hydroxybenzaldehyde thiosemicarbazones and triphenylphosphine: structural, cytotoxicity, and apoptotic studies. Dalton Trans 2020; 49:16474-16487. [PMID: 32914824 DOI: 10.1039/d0dt01134g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Novel silver(i) complexes of the type [AgCl(PPh3)2(L)] {PPh3 = triphenylphosphine; L = VTSC = 3-methoxy-4-hydroxybenzaldehyde thiosemicarbazone (1); VMTSC = 3-methoxy-4-[2-(morpholine-1-yl)ethoxy]benzaldehyde thiosemicarbazone (2); VPTSC = 3-methoxy-4-[2-(piperidine-1-yl)ethoxy]benzaldehyde thiosemicarbazone (3)} were synthesized and fully characterized by spectroscopic techniques. The molecular structures of complexes 2 and 3 were determined by single crystal X-ray diffraction. Compounds 1-3 exhibited appreciable cytotoxic activity against human tumor cells (lung A549, breast MDA-MB-231 and MCF-7) with IC50 values in 48 h of incubation ranging from 5.6 to 18 μM. Cellular uptake studies showed that complexes 1-3 were efficiently internalized after 3 hours of treatment in MDA-MB-231 cells. The effects of complex 1 on the cell morphology, cell cycle, induction of apoptosis, mitochondrial membrane potential (Δψm), and reactive oxygen species (ROS) production have been evaluated in triple negative breast cancer (TNBC) cells MDA-MB-231. Our results showed that complex 1 induced typical morphological alterations of cell death, an increase in cells at the sub-G1 phase, apoptosis, and mitochondrial membrane depolarization. Furthermore, DNA binding studies evidenced that 1 can bind to ct-DNA and does so without modifying the B-structure of the DNA, but that the binding is weak compared to that of Hoechst 33258.
Collapse
Affiliation(s)
- Débora E S Silva
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Silva DES, Becceneri AB, Solcia MC, Santiago JVB, Moreira MB, Gomes Neto JA, Pavan FR, Cominetti MR, Pereira JCM, Netto AVG. Cytotoxic and apoptotic effects of ternary silver(i) complexes bearing 2-formylpyridine thiosemicarbazones and 1,10-phenanthroline. Dalton Trans 2020; 49:5264-5275. [PMID: 32242564 DOI: 10.1039/d0dt00253d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
New silver(i) compounds containing 2-formylpyridine-N(4)-R-thiosemicarbazones and 1,10-phenanthroline (phen) were synthesized and characterized by spectroscopic techniques (IR and NMR), elemental analysis, ESI-MS and molar conductance measurements. In these complexes, both phen and thiosemicarbazone ligands are coordinated in a chelating bidentate fashion. Compounds 1-3 not only showed good in vitro antiproliferative activity against human lung (A549) and breast tumor cells (MDA-MB-231 and MCF-7), with IC50 values ranging from 1.49 to 20.90 μM, but were also demonstrated to be less toxic towards human breast non-tumor cells (MCF-10A). Cellular uptake studies indicated that compounds 1-3 were taken up by the MDA-MB-231 cells in 6 hours. Cell death assays in the MDA-MB-231 cells were conducted with compound 1 aiming to evaluate its effects on cell morphology, induction of apoptosis, the cell cycle, reactive oxygen species (ROS) formation and mitochondrial membrane potential (Δψm). Compound 1 caused morphological changes, such as cell shrinkage and rounding, increased the sub-G1 phase population, and induced apoptotic cell death, ROS formation and loss of mitochondrial membrane potential (Δψm). DNA binding results revealed that 1 interacted with the ct-DNA minor groove. Complexes 1-3 also exhibited good in vitro activity against M. tuberculosis H37Rv, with MIC values ranging from 3.37 to 4.65 μM.
Collapse
Affiliation(s)
- Débora E S Silva
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | - Amanda B Becceneri
- Department de Gerontology, Federal University of São Carlos, CEP 13565-905 São Carlos, SP, Brazil
| | - Mariana C Solcia
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, CEP 14800-903 Araraquara, SP, Brazil
| | - João V B Santiago
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | - Mariete B Moreira
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | - José A Gomes Neto
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | - Fernando R Pavan
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, CEP 14800-903 Araraquara, SP, Brazil
| | - Márcia R Cominetti
- Department de Gerontology, Federal University of São Carlos, CEP 13565-905 São Carlos, SP, Brazil
| | - José C M Pereira
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | - Adelino V G Netto
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| |
Collapse
|
11
|
Inhibition of histone deacetylases, topoisomerases and epidermal growth factor receptor by metal-based anticancer agents: Design & synthetic strategies and their medicinal attributes. Bioorg Chem 2020; 105:104396. [PMID: 33130345 DOI: 10.1016/j.bioorg.2020.104396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Metal-based inhibitors of histone deacetylases (HDAC), DNA topoisomerases (Topos) and Epidermal Growth Factor Receptor (EGFR) have demonstrated their cytotoxic potential against various cancer types such as breast, lung, uterus, colon, etc. Additionally, these have proven their role in resolving the resistance issues, enhancing the affinity, lipophilicity, stability, and biocompatibility and therefore, emerged as potential candidates for molecularly targeted therapeutics. This review focusses on nature and role of metals and organic ligands in tuning the anticancer activity in multiple modes of inhibition considering HDACs, Topos or EGFR as one of the primary targets. The conceptual design and synthetic approaches of platinum and non-platinum metal complexes comprising of chiefly ruthenium, rhodium, palladium, copper, iron, nickel, cobalt, zinc metals coordinated with organic scaffolds, along with their biological activity profiles, structure-activity relationships (SARs), docking studies, possible modes of action, and their scope and limitations are discussed in detail.
Collapse
|
12
|
Radaeva M, Dong X, Cherkasov A. The Use of Methods of Computer-Aided Drug Discovery in the Development of Topoisomerase II Inhibitors: Applications and Future Directions. J Chem Inf Model 2020; 60:3703-3721. [DOI: 10.1021/acs.jcim.0c00325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mariia Radaeva
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| |
Collapse
|
13
|
de Moura TR, Zanetti RD, Silva DES, de Farias RL, Mauro AE, Pereira JCM, de Souza AA, da Silva Siqueira F, de Souza Júdice WA, Lima MA, Rocha FV, Deflon VM, Vieira de Godoy Netto A. Palladium( ii) complexes bearing 1-iminothiolate-3,5-dimethylpyrazoles: synthesis, cytotoxicity, DNA binding and enzymatic inhibition studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj02825h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work describes the enzymatic inhibitory activity of four novel Pd(ii) complexes towards topoisomerase IIα and cathepsins B and L.In silicostudies agree well with the enhancedin vitrocathepsin B inhibition induced by compound4(58% at 10 μM).
Collapse
Affiliation(s)
- Thales Reggiani de Moura
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Renan Diego Zanetti
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Debora Eduarda Soares Silva
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Renan Lira de Farias
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Antonio Eduardo Mauro
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - José Clayston Melo Pereira
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Aline Aparecida de Souza
- UMC - Univ. de Mogi das Cruzes
- Centro Interdisciplinar de Investigação Bioquímica
- Mogi das Cruzes
- Brazil
| | - Fábio da Silva Siqueira
- UMC - Univ. de Mogi das Cruzes
- Centro Interdisciplinar de Investigação Bioquímica
- Mogi das Cruzes
- Brazil
| | | | - Mauro Almeida Lima
- UFSCar – Univ. Federal de São Carlos
- Departamento de Química
- São Carlos
- Brazil
| | | | | | | |
Collapse
|
14
|
Pires FC, Bresolin L, Gervini VC, Tirloni B, Bof de Oliveira A. Synthesis, crystal structure and Hirshfeld analysis of a crystalline compound comprising a 1/1 mixture of 1-[(1 R,4 S)- and 1-[(1 S,4 R)-1,7,7-trimethyl-2-oxobi-cyclo[2.2.1]heptan-3-yl-idene]hydrazinecarbo-thio-amide. Acta Crystallogr E Crystallogr Commun 2020; 76:115-120. [PMID: 31921463 PMCID: PMC6944080 DOI: 10.1107/s2056989019016980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 11/21/2022]
Abstract
The equimolar reaction between a racemic mixture of (R)- and (S)-camphorquinone with thio-semicarbazide yielded the title compound, C11H17N3OS [common name: (R)- and (S)-camphor thio-semicarbazone], which maintains the chirality of the methyl-ated chiral carbon atoms and crystallizes in the centrosymmetric space group C2/c. There are two mol-ecules in general positions in the asymmetric unit, one of them being the (1R)-camphor thio-semicarbazone isomer and the second the (1S)- isomer. In the crystal, the mol-ecular units are linked by C-H⋯S, N-H⋯O and N-H⋯S inter-actions, building a tape-like structure parallel to the (01) plane, generating R 2 1(7) and R 2 2(8) graph-set motifs for the H⋯S inter-actions. The Hirshfeld surface analysis indicates that the major contributions for crystal cohesion are from H⋯H (55.00%), H⋯S (22.00%), H⋯N (8.90%) and H⋯O (8.40%) inter-actions.
Collapse
Affiliation(s)
- Fabrício Carvalho Pires
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Leandro Bresolin
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Vanessa Carratu Gervini
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Bárbara Tirloni
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima s/n, Campus Universitário, 97105-900 Santa Maria-RS, Brazil
| | - Adriano Bof de Oliveira
- Departamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus Universitário, 49100-000 São Cristóvão-SE, Brazil
| |
Collapse
|
15
|
da Cunha GA, de Souza RFF, de Farias RL, Moreira MB, Silva DES, Zanetti RD, Garcia DM, Spindola DG, Michelin LFG, Bincoletto C, de Souza AA, Antunes AA, Judice WADS, Leitao RCF, Deflon VM, Mauro AE, Netto AVG. Cyclopalladated compounds containing 2,6-lutidine: Synthesis, spectral and biological studies. J Inorg Biochem 2019; 203:110944. [PMID: 31794895 DOI: 10.1016/j.jinorgbio.2019.110944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Bridge splitting reactions between [Pd(C2,N-dmba)(μ-X)]2 (dmba = N,N-dimethylbenzylamine; X = Cl, I, N3, NCO) and 2,6-lutidine (lut) in the 1:2 molar ratio at room temperature afforded cyclopalladated compounds of general formulae [Pd(C2,N-dmba)(X)(lut)] {X = Cl- (1), I-(2), NNN-(3), NCO-(4)}, which were characterized by elemental analyses and infrared (IR), 1H NMR spectroscopy. The molecular structures of all synthesized palladacycles have been solved by single-crystal X-ray crystallography. The cytotoxicity of the cyclopalladated compounds has been evaluated against a panel of murine {mammary carcinoma (4T1) and melanoma (B16F10-Nex2)} and human {melanoma (A2058, SK-MEL-110 and SK-MEL-5) tumor cell lines. All complexes were about 10 to 100-fold more active than cisplatin, depending on the tested tumor cell line. For comparison purposes, the cytotoxic effects of 1-4 towards human lung fibroblasts (MRC-5) have also been tested. The late apoptosis-inducing properties of 1-4 compounds in SK-MEL-5 cells were verified 24 h incubation using annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide (PI). The binding properties of the model compound 1 on human serum albumin (HSA) and calf thymus DNA (ct-DNA) have been studied using circular dichroism and fluorescence spectroscopy. Docking simulations have been carried out to gain more information about the interaction of the palladacycle and HSA. The ability of compounds 1-4 to inhibit the activity of cathepsin B and L has also been investigated in this work.
Collapse
Affiliation(s)
- Gislaine A da Cunha
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Ronan F F de Souza
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Renan L de Farias
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Mariete B Moreira
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Débora E S Silva
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Renan D Zanetti
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Daniel M Garcia
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Daniel G Spindola
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Luis F G Michelin
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Claudia Bincoletto
- São Paulo Federal University (UNIFESP), Department of Pharmacology, São Paulo Medicinal School, 04044-020 São Paulo, SP, Brazil
| | - Aline A de Souza
- Centro Interdisciplinar de Investigação Bioquímica -CIIB, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida Souza, 200-CEP: 08701-970, CP: 411, Mogi das Cruzes, SP, Brazil
| | - Alyne A Antunes
- Centro Interdisciplinar de Investigação Bioquímica -CIIB, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida Souza, 200-CEP: 08701-970, CP: 411, Mogi das Cruzes, SP, Brazil
| | - Wagner A de S Judice
- Centro Interdisciplinar de Investigação Bioquímica -CIIB, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida Souza, 200-CEP: 08701-970, CP: 411, Mogi das Cruzes, SP, Brazil
| | - Renan C F Leitao
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), 13566-590 São Carlos, SP, Brazil
| | - Victor M Deflon
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), 13566-590 São Carlos, SP, Brazil
| | - Antônio E Mauro
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil
| | - Adelino V G Netto
- UNESP - Univ Estadual Paulista, Institute of Chemistry, 14800-060 Araraquara, SP, Brazil.
| |
Collapse
|