1
|
AlAli A, Alkanad M, Alkanad K, Venkatappa A, Sirawase N, Warad I, Khanum SA. A comprehensive review on anti-inflammatory, antibacterial, anticancer and antifungal properties of several bivalent transition metal complexes. Bioorg Chem 2025; 160:108422. [PMID: 40187028 DOI: 10.1016/j.bioorg.2025.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Transition metal complexes have been recognized as possible therapeutic agents, attributed to their special biological actions, including anti-inflammatory, antibacterial, antifungal, and anticancer. The pharmacological perspective connected with Copper (Cu), Cobalt (Co), Nickel (Ni), Manganese (Mn), Palladium (Pd), Zinc (Zn), and Platinum (Pt) metal(II) complexes is comprehensively explored in-depth in this research. The complexes show unique coordination chemistry and modes of action that help interactions with biological targets, including DNA binding, enzyme inhibition, and the formation of reactive oxygen species. All the metal(II) complexes showed notable potential impact in their perspective activity. Conspicuously, Co(II) and Ni(II) complexes show better antibacterial and antifungal action, while Cu(II) and Zn(II) combinations show higher anti-inflammatory activity. While research is constantly investigating alternative metal-based anticancer drugs like Pd(II), which seem to have lowered side effects, Pt(II) complexes especially cisplatin continue to be the benchmark in cancer treatment. Although the possible pharmacological actions are motivating, problems with toxicity and biocompatibility still provide major difficulties, especially in relation to Cd(II) and Hg(II) complexes. Strategies like ligand modification, nanoparticle-based delivery, and prodrug methods are used to increase selectivity and reduce side effects related to metal complexes. This review compiles the most recent developments and continuous research, thereby shedding light on the potential revolutionary power of metal(II) complexes in medical therapy. Understanding their mechanisms and enhancing their safety profiles will help us open the path to creative ideas for addressing some of the most urgent medical issues of today.
Collapse
Affiliation(s)
- Anas AlAli
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Maged Alkanad
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Khaled Alkanad
- Department of Studies in Physics, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Annegowda Venkatappa
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Nischith Sirawase
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Ismail Warad
- Department of Chemistry, AN-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
2
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
3
|
Ragheb MA, Soliman MH, Abdelhamid IA, Shoukry MM, Haukka M, Ragab MS. Anticancer behaviour of 2,2'-(pyridin-2-ylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione)-based palladium(II) complex and its DNA, BSA binding propensity and DFT study. J Inorg Biochem 2024; 253:112488. [PMID: 38325158 DOI: 10.1016/j.jinorgbio.2024.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Herein, we report the synthesis and biological evaluation of [Pd(L)(OH2)Cl] complex (where L = 2,2'-(pyridin-2-ylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione) as a novel promising anticancer candidate. The complex was characterized by single-crystal X-ray diffraction and other various spectroscopic techniques. Besides, the optimized structure was determined through DFT calculations revealing that the coordination geometry of [Pd(L)(OH2)Cl] complex is square planar. The binding propensity of [Pd(L)(OH2)Cl] complex with DNA and BSA was assessed by the spectrophotometric method. The antimicrobial profile of the ligand and its [Pd(L)(OH2)Cl] complex was screened against clinically important bacterial strains. [Pd(L)(OH2)Cl] complex showed promising activity against these microorganisms. Pd(L)(OH2)Cl] complex exhibited a potent antiproliferative potential compared to its ligand against different human cancer cells (A549, HCT116, MDA-MB-231, and HepG2) with less toxic effect against normal cells (WI-38). Additionally, [Pd(L)(OH2)Cl] complex exerted its anticancer effects against the most responsive cells (HCT116 cells; IC50 = 11 ± 1 μM) through suppressing their colony-forming capabilities and triggering apoptosis and cell cycle arrest at S phase. Quantitative PCR analysis revealed a remarkable upregulation of the mRNA expression level of p53 and caspase-3 by 4.8- and 5.9-fold, respectively, relative to control. Remarkable binding properties and non-covalent interactions between L and its [Pd(L)(OH2)Cl] complex with the binding sites of different receptors including CDK2, MurE ligase, DNA, and BSA were established using molecular docking. Based on our results, [Pd(L)(OH2)Cl] complex is an intriguing candidate for future investigations as a potential anticancer drug for the treatment of colon cancer.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | | | - Mohamed M Shoukry
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Zhou M, Boulos JC, Omer EA, Rudbari HA, Schirmeister T, Micale N, Efferth T. Two palladium (II) complexes derived from halogen-substituted Schiff bases and 2-picolylamine induce parthanatos-type cell death in sensitive and multi-drug resistant CCRF-CEM leukemia cells. Eur J Pharmacol 2023; 956:175980. [PMID: 37567459 DOI: 10.1016/j.ejphar.2023.175980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The use of cisplatin and its derivatives in cancer treatment triggered the interest in metal-containing complexes as potential novel anticancer agents. Palladium (II)-based complexes have been synthesized in recent years with promising antitumor activity. Previously, we described the synthesis and cytotoxicity of palladium (II) complexes containing halogen-substituted Schiff bases and 2-picolylamine. Here, we selected two palladium (II) complexes with double chlorine-substitution or double iodine-substitution that displayed the best cytotoxicity in drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells for further biological investigation. Surprisingly, these compounds did not significantly induce apoptotic cell death. This study aims to reveal the major mode of cell death of these two palladium (II) complexes. We performed annexin V-FITC/PI staining and flow cytometric mitochondrial membrane potential measurement followed by western blotting, immunofluorescence microscopy, and alkaline single cell electrophoresis (comet assay). J4 and J6 still induced neither apoptosis nor necrosis in both leukemia cell lines. They also insufficiently induced autophagy as evidenced by Beclin and p62 detection in western blotting. Interestingly, J4 and J6 induced a novel mode of cell death (parthanatos) as mainly demonstrated in CCRF-CEM cells by hyper-activation of poly(ADP-ribose) polymerase 1 (PARP) and poly(ADP-ribose) (PAR) using western blotting, flow cytometric measurement of mitochondrial membrane potential collapse, nuclear translocation of apoptosis-inducing factor (AIF) by immunofluorescence microscopy, and DNA damage by alkaline single cell electrophoresis (comet assay). AIF translocation was also observed in CEM/ADR5000 cells. Thus, parthanatos was the predominant mode of cell death induced by J4 and J6, which explains the high cytotoxicity in CCRF-CEM and CEM/ADR5000 cells. J4 and J6 may be interesting drug candidates and deserve further investigations to overcome resistance of tumors against apoptosis. This study will promote the design of further novel palladium (II)-based complexes as chemotherapeutic agents.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 1-98166, Messina, Italy
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
5
|
Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. Eur J Med Chem 2022; 238:114449. [DOI: 10.1016/j.ejmech.2022.114449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
|
6
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Wazalwar SS, Banpurkar AR, Perdih F. Single crystal structure of 3-(2-(3-acetylphenyl)hydrazono)pentane-2,4-dione and molecular docking study with CYP450 members for anticancer molecular screening. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Antitumor Activity of Palladium(II) Complexes on DU-145 Cell Line in Vitro. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In the area of non-platinum complexes, various complexes containing gold, copper, ruthenium, and palladium have shown a strong cytotoxic effect on different cancer cell lines. The aim of our study was to examine the cytotoxicity of the Pd(II) complexes (C1-C5) and the corresponding ligands (L1-L5) on the DU-145 prostate cancer cell line. Also, due to its clinical application, the cytotoxicity of cisplatin has been examined. Our findings showed that C1- C5 complexes and cisplatin show dose-dependent and strong cytotoxic effects against the DU-145 cell line in vitro. Furthermore, the results demonstrated that early apoptosis was induced by all five Pd(II) complexes. Also, the results showed that complexes C1, C3, and C5 induced G0/G1 phase arrest on DU- 145 cells. Pd(II) complex C2 induced S phase arrest, while C4 complex induced G2/M phase arrest on cancer cells. Additionally, all tested complexes significantly reduced the amount of antiapoptotic protein Bcl-2. Also, there was a significant increase in the concentration of proapoptotic Bax protein in DU-145 cells treated C1-C5 complexes. The results of our research demonstrated that Pd(II) complexes induced apoptosis via the mitochondrial pathway. Thus, it is crucial to further investigate the cytotoxicity of these Pd(II) complexes in vivo. Complex C2 might be a good candidate for a new generation of anticancer drugs.
Collapse
|
9
|
Kaya Y, Erçağ A, Zorlu Y, Demir Y, Gülçin İ. New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J Biol Inorg Chem 2022; 27:271-281. [PMID: 35175415 DOI: 10.1007/s00775-022-01932-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Pd(II) complexes (Pd1, Pd2, and Pd3) were synthesized for the first time using asymmetric isatin bisthiocarbohydrazone ligands and PdCl2(PPh3)2. All complexes were characterized by a range of spectroscopic and analytical techniques. The molecular structures of Pd1 and Pd3 have been determined by single-crystal X-ray diffraction analysis. The complexes are diamagnetic and exhibit square planar geometry. The asymmetric isatin bisthiocarbohydrazone ligands coordinate to Pd(II) ion in a tridentate manner, through the phenolic oxygen, imine nitrogen and thiol sulfur, forming five- and six-membered chelate rings within their structures. The fourth coordination site in these complexes is occupied by PPh3 (triphenylphosphine). The free ligands and their Pd(II) complexes were evaluated for their carbonic anhydrase I, II (hCAs) and acetylcholinesterase (AChE) inhibitor activities. They showed a highly potent inhibition effect on AChE and hCAs. Ki values are in the range of 9 ± 0.6 - 30 ± 5.4 nM for AChE, 7 ± 0.5 - 16 ± 2.2 nM for hCA I and 3 ± 0.3-24 ± 1.9 nM for hCA II isoenzyme. The results clearly demonstrated that the ligands and their Pd(II) complexes effectively inhibited the used enzymes.
Collapse
Affiliation(s)
- Yeliz Kaya
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey
| | - Ayşe Erçağ
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcılar, Istanbul, Turkey.
| | - Yunus Zorlu
- Faculty of Science, Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational School, Ardahan University, 75700, Ardahan, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25400, Erzurum, Turkey
| |
Collapse
|
10
|
Simić D, Zarić M, Nikolić I, Živković-Zarić R, Čanović P, Kočović A, Radojević I, Raković I, Jovičić Milić S, Petrović Đ, Stojković D, Vuković N, Kačániová M, Vukić M, Jevtić V. Newly synthesized palladium(II) complexes with aminothiazole derivatives: in vitro study of antimicrobial activity and antitumor activity on the human prostate cancer cell line. Dalton Trans 2021; 51:1191-1205. [PMID: 34951416 DOI: 10.1039/d1dt03364f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Five new complexes of the palladium(II) ion (C1-C5) having the general formula [(PdL2)]Cl2 with some 2-aminothiazoles (L1-L5), where L1 = 2-amino-4-(3,4-difluorophenyl)thiazole, L2 = 2-amino-5-methyl-4-phenylthiazole, L3 = 2-amino-4-phenylthiazole, L4 = 2-amino-4-(4-chlorophenyl)thiazole, and L5 = 2-amino-4-(2,4-difluorophenyl)thiazole, have been synthesized and characterized by elemental microanalysis and infrared, 1H NMR and 13C NMR spectroscopy. The in vitro antimicrobial activity of the five ligands and the corresponding Pd(II) complexes is investigated. Testing is performed by the microdilution method and the minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) have been determined. Testing is conducted against 11 microorganisms (nine strains of pathogenic bacteria and two yeast species). The tested ligands and palladium(II) complexes show selective, high and moderate activity. There is a difference in antimicrobial activity between the ligands and the corresponding palladium(II) complexes. The complexes have significant anti-staphylococcal activity and activity on Pseudomonas aeruginosa which is better than the positive control. The interactions of newly synthesized palladium(II) complexes with calf thymus DNA (CT-DNA) were investigated using UV-Vis absorption and fluorescence spectroscopy. Analysis of UV-absorption and fluorescence spectra indicates the formation of a complex between the palladium(II) complexes and DNA. The high values of intrinsic binding constants, Kb, of the order 104 M-1 and Stern-Volmer quenching constants, KSV, of the order 105 M-1 indicated very good binding of all complexes to CT-DNA. Also, the new Pd(II) complexes show high cytotoxic activity towards the human prostate cancer cell line and insignificant activity towards non-cancerous human fibroblasts. Future research could additionally explore the biological activity of Pd(II) complexes presented in this paper and investigate the possibility of their implementation in clinical practice.
Collapse
Affiliation(s)
- Dejan Simić
- University of Defence, Belgrade, Serbia, Military Medical Academy, Department of Urology, Crnotravska 17, 11040 Belgrade, Serbia
| | - Milan Zarić
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Ivana Nikolić
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Radica Živković-Zarić
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacology and Toxicology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Petar Čanović
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Aleksandar Kočović
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Ivana Radojević
- University of Kragujevac, Serbia, Faculty of Science, Department of Biology, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Ivana Raković
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Infectious diseases, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Sandra Jovičić Milić
- University of Kragujevac, Serbia, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Đorđe Petrović
- University of Kragujevac, Serbia, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Danijela Stojković
- University of Kragujevac, Serbia, Institute for Information Technologies, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Nenad Vuković
- University of Kragujevac, Serbia, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Miroslava Kačániová
- Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Department of Fruit sciences, Viticulture and Enology, Trieda Andreja Hlinku 2, 949 76 Nitra-Chrenová, Slovakia
| | - Milena Vukić
- University of Kragujevac, Serbia, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Verica Jevtić
- University of Kragujevac, Serbia, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| |
Collapse
|
11
|
Reactions of Quinolinecarbaldehydes with Arenes under Superelectrophilic Activation. NMR and DFT Studies of Dicationic Electrophilic Species. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03015-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
New insights into the mechanism of action of the cyclopalladated complex - CP2 in Leishmania: Calcium Dysregulation, Mitochondrial Dysfunction and Cell Death. Antimicrob Agents Chemother 2021; 66:e0076721. [PMID: 34633848 DOI: 10.1128/aac.00767-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment of leishmaniasis is based on few drugs that present several drawbacks such as high toxicity, difficult administration route, and low efficacy. These disadvantages raise the necessity to develop novel antileishmanial compounds allied to a comprehensive understanding of their mechanisms of action. Here, we elucidate the probably mechanism of action of the antileishmanial binuclear cyclopalladated complex [Pd(dmba)(μ-N3)]2 (CP2) in Leishmania amazonensis. CP2 causes oxidative stress in the parasite resulting in disruption of mitochondrial Ca2+ homeostasis, cell cycle arrest at S-phase, increasing the ROS production and overexpression of stress-related and cell detoxification proteins, collapsing the Leishmania mitochondrial membrane potential and promotes apoptotic-like features in promastigotes leading to necrosis or directs programmed cell death (PCD)-committed cells toward necrotic-like destruction. Moreover, CP2 is able to reduce the parasite load in both liver and spleen in Leishmania infantum-infected hamsters when treated for 15 days with 1.5 mg/Kg/day CP2, expanding its potential application in addition to the already known effectiveness on cutaneous leishmaniasis for the treatment of visceral leishmaniasis, showing the broad spectrum of action of this cyclopalladated complex. The data herein presented bring new insights into the CP2 molecular mechanisms of action, assisting to promote its rational modification to improve both safety and efficacy.
Collapse
|
13
|
Palmeira-Mello MV, Caballero AB, Lopez-Espinar A, Guedes GP, Caubet A, de Souza AMT, Lanznaster M, Gamez P. DNA-interacting properties of two analogous square-planar cis-chlorido complexes: copper versus palladium. J Biol Inorg Chem 2021; 26:727-740. [PMID: 34453615 PMCID: PMC8437883 DOI: 10.1007/s00775-021-01888-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Two square-planar coordination compounds, namely [Cu(CPYA)Cl2] (1) and [Pd(CPYA)Cl2] (2), were prepared from the ligand 4-chloro-N-(pyridin-2-ylmethyl)aniline (CPYA) and two chloride salts, and were fully characterized, including by X-ray diffraction. Spectroscopic, electrophoretic and AFM studies revealed that the two isostructural compounds were interacting differently with DNA. In both cases, the initial interaction involves electrostatic contacts of the CPYA ligand in the minor groove (as suggested by molecular docking), but subsequent strong binding occurs with the palladium(II) complex 2, whereas the binding with the copper complex 1 is weaker and concentration dependent. The strong binding of 2 eventually leads to the cleavage of the double strand and the redox activity of 1 allows to oxidatively cleave the biomolecule.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói, RJ, 24020-141, Brazil
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Laboratório de Modelagem Molecular and QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Aida Lopez-Espinar
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói, RJ, 24020-141, Brazil
| | - Amparo Caubet
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Alessandra M Teles de Souza
- Laboratório de Modelagem Molecular and QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói, RJ, 24020-141, Brazil
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
14
|
Oliveira AP, Ferencs M, Azevedo VO, Diniz R, Louro SR, Alves OC, Beraldo H. Physicochemical characterization of antimony(III), copper(II) and silver(I) complexes with 4-nitroimidazole-derived hydrazones. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Inhibition of histone deacetylases, topoisomerases and epidermal growth factor receptor by metal-based anticancer agents: Design & synthetic strategies and their medicinal attributes. Bioorg Chem 2020; 105:104396. [PMID: 33130345 DOI: 10.1016/j.bioorg.2020.104396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Metal-based inhibitors of histone deacetylases (HDAC), DNA topoisomerases (Topos) and Epidermal Growth Factor Receptor (EGFR) have demonstrated their cytotoxic potential against various cancer types such as breast, lung, uterus, colon, etc. Additionally, these have proven their role in resolving the resistance issues, enhancing the affinity, lipophilicity, stability, and biocompatibility and therefore, emerged as potential candidates for molecularly targeted therapeutics. This review focusses on nature and role of metals and organic ligands in tuning the anticancer activity in multiple modes of inhibition considering HDACs, Topos or EGFR as one of the primary targets. The conceptual design and synthetic approaches of platinum and non-platinum metal complexes comprising of chiefly ruthenium, rhodium, palladium, copper, iron, nickel, cobalt, zinc metals coordinated with organic scaffolds, along with their biological activity profiles, structure-activity relationships (SARs), docking studies, possible modes of action, and their scope and limitations are discussed in detail.
Collapse
|