1
|
Kochoni E, Aharchaou I, Ohlund L, Rosabal M, Sleno L, Fortin C. New insights in copper handling strategies in the green alga Chlamydomonas reinhardtii under low-iron condition. Metallomics 2022; 14:6582230. [PMID: 35524697 DOI: 10.1093/mtomcs/mfac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022]
Abstract
Copper (Cu) is a redox-active transition element critical to various metabolic processes. These functions are accomplished in tandem with Cu binding ligands, mainly proteins. The main goal of this work was to understand the mechanisms that govern the intracellular fate of Cu in the freshwater green alga, Chlamydomonas reinhardtii, and more specifically to understand the mechanisms underlying Cu detoxification by algal cells in low-Fe conditions. We show that Cu accumulation was up to 51-fold greater for algae exposed to Cu in low-Fe medium as compared to the replete-Fe growth medium. Using the stable isotope 65Cu as a tracer, we studied the subcellular distribution of Cu within the various cell compartments of C. reinhardtii. These data were coupled with metallomic and proteomic approaches to identify potential Cu-binding ligands in the heat-stable protein and peptide fractions of the cytosol. Cu was mostly found in the organelles (78%), and in the heat-stable proteins and peptides (21%) fractions. The organelle fraction appeared to also be the main target compartment of Cu accumulation in Fe-depleted cells. As Fe levels in the medium were shown to influence Cu homeostasis, we found that C. reinhardtii can cope with this additional stress by utilizing different Cu-binding ligands. Indeed, in addition to expected Cu-binding ligands such as glutathione and phytochelatins, 25 proteins were detected that may also play a role in the Cu detoxification processes in C. reinhardtii. Our results shed new light on the coping mechanisms of C. reinhardtii when exposed to environmental conditions that induce high rates of Cu accumulation.
Collapse
Affiliation(s)
- Emeric Kochoni
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Imad Aharchaou
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Leanne Ohlund
- Département de Chimie, Université du Québec à Montréal (UQAM), 2101, rue Jeanne-Mance, Montréal, QC, H2×2J6, Canada
| | - Maikel Rosabal
- EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,Département des Sciences biologiques, Université du Québec à Montréal (UQAM), 141 Avenue du Président-Kennedy, Montréal, QC, H2×1Y4, Canada
| | - Lekha Sleno
- EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,Département de Chimie, Université du Québec à Montréal (UQAM), 2101, rue Jeanne-Mance, Montréal, QC, H2×2J6, Canada
| | - Claude Fortin
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
2
|
Tsikas D, Gambaryan S. Nitrous anhydrase activity of carbonic anhydrase II: cysteine is required for nitric oxide (NO) dependent phosphorylation of VASP in human platelets. J Enzyme Inhib Med Chem 2021; 36:525-534. [PMID: 33508993 PMCID: PMC7875556 DOI: 10.1080/14756366.2021.1874946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The carbonic anhydrase (CA) family does not only catalyse the reversible hydration of CO2 to bicarbonate, but it also possesses esterase and phosphatase activity. Recently, bovine CA II and human CA II have been reported to convert inorganic nitrite (O=N-O−) to nitric oxide (NO) and nitrous anhydride (N2O3). Given the ability of NO to mediate vasodilation and inhibit platelet aggregation, this CA II activity would represent a bioactivation of nitrite. There are contradictory reports in the literature and the physiological role of CA II nitrite bioactivation is still disputed. Here, we provide new experimental data in support of the nitrous anhydrase activity of CA II and the key role L-cysteine in the bioactivation of nitrite by CA II. Using washed human platelets and by measuring VASP phosphorylation we provide evidence that exogenous nitrite (10 µM) is bioactivated to NO in a manner strongly depending on L-cysteine (100 and 200 µM). The process is not inhibitable by acetazolamide, a potent CA inhibitor. The contradictory results of recently published studies in this area are thoroughly discussed.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Petersburg, Russia
| |
Collapse
|
3
|
Tsikas D. Comment on the article Structure and mechanism of copper-carbonic anhydrase II: a nitrite reductase. IUCRJ 2021; 8:327-328. [PMID: 33708408 PMCID: PMC7924222 DOI: 10.1107/s2052252520016644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/23/2020] [Indexed: 05/15/2023]
Abstract
The paper discusses a recent paper [Andring et al. (2020). IUCrJ, 7, 287-293] on the nitrite reductase and nitrous anhydrase activity of carbonic anhydrase.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- Correspondence e-mail:
| |
Collapse
|