1
|
Panicker RR, Joseph S, Dharani S, John ML, Kuriappan AT, Abraham JT, Abdul Majeed S, Pavankumar BB, Ashok Kumar SK, Sivaramakrishna A. A highly lipophilic terpyridine ligand as an efficient fluorescent probe for the selective detection of zinc(II) ions under biological conditions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:232-245. [PMID: 39606843 DOI: 10.1039/d4ay01818d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The present work describes the synthesis of new terpyridine (tpy) molecules possessing functionalized long alkyl chains at the 4'-position associated with a planar structure with considerable delocalization. Out of the three synthesized tpy derivatives (L1, L2, and L3), L2 containing an ester group at the end of the alkyl chain emerged as an excellent probe for the selective detection of Zn2+. The detection of Zn2+ ions under biological conditions was achieved by the introduction of a distinct aliphatic undecanoic ester chain at the 4'-position of the core terpyridine ring, thereby making it more lipophilic. The increased lipophilicity aids in the probe performance by enabling precise Zn2+ detection and bioimaging. The bioimaging capability of the probe L2 for Zn2+ ions was demonstrated in ICG cell lines. The RGB method was integrated into the detection process, making it portable and low-cost. The LODs were determined to be 106 and 115 nM, respectively, for the solution-phase and test paper strips. The probe L2 was successfully utilized to determine Zn2+ levels in pharmaceutical and water samples.
Collapse
Affiliation(s)
- Rakesh R Panicker
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Suman Joseph
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - S Dharani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Martin Luther John
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Amal T Kuriappan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Josh T Abraham
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - S Abdul Majeed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam 632509, Tamil Nadu, India
| | - B B Pavankumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - S K Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Huang X, Wang B, Sun D, Chen M, Xue X, Liu H, Zhou Y, Ma Z. Synthesis of substituted terpyridine nickel nitrate complexes and their inhibitory selectivity against cancer cell lines. J Inorg Biochem 2024; 256:112554. [PMID: 38613885 DOI: 10.1016/j.jinorgbio.2024.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Six terpyridine‑nickel complexes 1-6 were formed by the coordination of 4'-(4-R-phenyl)-2,2':6',2″-terpyridine (R = hydroxyl (L1), methoxyl (L2), methylsulfonyl (L3), fluoro (L4), bromo (L5), iodo (L6)) derivatives to nickel nitrate. The compositions and structures of these complexes were analyzed by Fourier Transform infrared spectroscopy (FT-IR), elemental analyses, electrospray ionization mass spectra (ESI-MS), solid-state ultraviolet-visible (UV-Vis) spectroscopy, and single crystal X-ray diffraction (1, 2 and 4) studies. In vitro anticancer cell proliferation experiments against SiHa (human cervical squamous cancer cell line) cells, Bel-7402 (human hepatoma cancer cell line), Eca-109 (human esophageal cancer cell line) and HL-7702 (human normal hepatocyte cell line) indicate that they have more excellent anti-proliferation effects than the cis-platin against Siha cells, Bel-7402 cells and Eca-109 cells. Especially, complex 5 showed a rather outstanding inhibitory effect against the SiHa cell line and was less toxic than the other compounds to the HL-7702 cell line, implying an obvious specific inhibitory effect. Therefore, complex 5 has the potential value to be developed as an anticancer cell-specific drug against human cervical squamous carcinoma. Molecular docking simulation, UV-vis absorption spectroscopy and circular dichroism experiments show that they prefer to bind to DNA part in an embedded binding manner.
Collapse
Affiliation(s)
- Xin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Benwei Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Dameng Sun
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, 530006 Nanning, Guangxi, China.
| | - Hongming Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China.
| | - Yanling Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, China.
| |
Collapse
|
3
|
Lin K, Jia X, Zhang X, Li W, Wang B, Wang Z, Xue X, Fan X, Ma Z. Synthesis, characterization, antiproliferative activity and DNA binding calculation of substituted-phenyl-terpyridine copper(II) nitrate complexes. J Inorg Biochem 2023; 250:112418. [PMID: 39492401 DOI: 10.1016/j.jinorgbio.2023.112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Ten 4'- (R-phenyl) -2,2': 6', 2' - terpyridine ligands (R = hydrogen (L1), hydroxyl (L2), methoxyl (L3), methylsulfonyl (L4), methyl (L5), phenyl (L6), fluoro (L7), chloro (L8), bromo (L9), and iodo (L10)) were synthesized. The reaction of these ligands with copper(II) nitrate led to complexes 1-10. The characterization of 1-10 was carried out by means of mass spectrometry, elemental analysis, infrared spectroscopy and X-ray single crystal diffraction. Four cell lines including esophageal cancer cell line (Eca-109), human liver cancer cell line (Bel-7402), human breast cancer cell line (SIHa) and human normal liver cell line (HL-7702) were selected to carry out antiproliferation and cytotoxicity experiments in vitro. The results showed that the complexes have strong inhibitory ability on the growth of tumor cells. In order to study the anticancer mechanism of the complexes, the binding mode and binding ability of the complexes with DNA were further determined and discussed with UV-Vis spectroscopy and circular dichroism. The effects of the lowest binding energy and hydrogen bond on the binding were studied using molecular docking calculation.
Collapse
Affiliation(s)
- Kejuan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xinjie Jia
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xueying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Weikeduo Li
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Benwei Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, 530006 Nanning, Guangxi, People's Republic of China.
| | - Xiaosu Fan
- School of Agriculture, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
4
|
Wang B, Sun D, Wang S, Chen M, Liu H, Zhou Y, Chen H, Ma Z. Nickel chloride complexes with substituted 4'-phenyl-2',2':6',2″-terpyridine ligands: synthesis, characterization, anti-proliferation activity and biomolecule interactions. J Biol Inorg Chem 2023; 28:627-641. [PMID: 37523103 DOI: 10.1007/s00775-023-02011-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/08/2023] [Indexed: 08/01/2023]
Abstract
A series of Ni(II) sandwich-like coordinated compounds were synthesized by the reaction of nickel dichloride and ten 4'-(4-substituent phenyl)-2',2':6',2″-terpyridine ligands, and their structures were confirmed by elemental analysis, FT-IR, ESI-MS, solid state ultraviolet spectroscopy and X-ray single crystal diffraction analysis. Three human cancer cell lines and a normal human cell line were used for anti-proliferation potential study: human lung cancer cell line (A549), human esophageal cancer cell line (Eca-109), human liver cancer cells (Bel-7402) and normal human liver cells (HL-7702). The results show that these nickel complexes possess good inhibitory effects on the cancer cells, outperforming the commonly used clinical chemotherapy drug cisplatin. Especially, complexes 3 (-methoxyl) and 7 (-fluoro) have strong inhibitory ability against Eca-109 cell line with IC50 values of 0.223 μM and 0.335 μM, complexes 4 and 6 showed certain cell selectivity, and complex 6 can inhibit cancer cells and slightly poison normal cells when the concentration was controlled. The ability of these complexes binding to CT-DNA was studied by UV titration and CD spectroscopy, and CD spectroscopy was also used to study the secondary structural change of BSA under the action of the complexes. The binding of these complexes with DNA, DNA-Topo I and bovine serum protein has been simulated by molecular docking software, and the docking results and optimal binding conformation data showed that they interacted with DNA in the mode of embedded binding, which is consistent with the experimental results. These complexes are more inclined to move to the cleavage site when docking with DNA-Topo I, so as to play a role of enzyme cleavage, while BSA promotes the action of the complexes by binding to effective binding sites.
Collapse
Affiliation(s)
- Benwei Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Dameng Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Sihan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Hongming Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China.
| | - Yanling Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
5
|
Li J, Wang Z, Chen Z, Xue X, Lin K, Chen H, Pan L, Yuan Y, Ma Z. Silver complexes with substituted terpyridines as promising anticancer metallodrugs and their crystal structure, photoluminescence, and DNA interactions. Dalton Trans 2023; 52:9607-9621. [PMID: 37377144 DOI: 10.1039/d2dt03463h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Six silver hexafluoroantimonate complexes (1-6) with 4'-(4'-substituted-phenyl)-2,2':6',2''-terpyridine compounds bearing hydrogen (L1), methyl (L2), methylsulfonyl (L3), chloro (L4), bromo (L5) and iodo (L6) were prepared and characterized by 1H NMR, 13C NMR, IR, elemental analysis and single crystal X-ray diffraction. All the compounds exhibit interesting photoluminescence properties in the solid state and solution. In vitro data demonstrate that all of them show higher antiproliferative activities than cisplatin against three human carcinoma cell lines, A549, Eca-109 and MCF-7. Compound 3 exhibits the lowest IC50 value (2.298 μM) against A549 cell lines, which is 2.963 μM for 4 against Eca-109 and 1.830 μM for 1 against MCF-7. For silver halogen-substituted terpyridine compounds, their anticancer activities decrease following the sequence of -Cl, -Br, and -I substituents. The comparison results show that their anticancer activity is significantly higher than that of their free ligands. The DNA interaction was studied by fluorescence titration, circular dichroism spectroscopy and molecular modeling methods. Spectrophotometric results reveal that the compounds have strong affinity binding with DNA as intercalators and molecular docking studies indicate that the binding is contributed by the π-π stacking and hydrogen bonds. The DNA binding ability of the complexes has been correlated with their anticancer activities, which could potentially provide a new rationale for the future design of terpyridine-based metal complexes with antitumor potential.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, People's Republic of China
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, People's Republic of China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Zhongting Chen
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, People's Republic of China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Kejuan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, People's Republic of China
| | - Yulin Yuan
- Department of Laboratory Medicine, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
6
|
Wang Z, Li J, Liu R, Jia X, Liu H, Xie T, Chen H, Pan L, Ma Z. Synthesis, characterization and anticancer properties: A series of highly selective palladium(II) substituted-terpyridine complexes. J Inorg Biochem 2023; 244:112219. [PMID: 37058991 DOI: 10.1016/j.jinorgbio.2023.112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Ten new palladium(II) complexes [PdCl(L1-10)]Cl have been synthesized by the reaction of palladium(II) chloride and ten 4'-(substituted-phenyl)-2,2':6',2''-terpyridine ligands bearing hydrogen(L1), p-hydroxyl(L2), m-hydroxyl (L3), o-hydroxyl (L4), methyl (L5), phenyl (L6), fluoro (L7), chloro (L8), bromo (L9), or iodo (L10). Their structures were confirmed by FT-IR, 1H NMR, elemental analysis and/or single crystal X-ray diffraction analysis. Their in vitro anticancer activities were investigated based on five cell lines, including four cancer cell lines (A549, Eca-109, Bel-7402, MCF-7) and one normal cell line (HL-7702). The results show that these complexes possess a strong killing effect on the cancer cells but a weak proliferative inhibition on the normal cells, implying their high inhibitory selectivity for the proliferation of the cancer cell lines. Flow cytometry characterization reveals that these complexes affect cell proliferation mainly in the G0/G1 phase and induce the late apoptotic of the cells. The quantity of palladium(II) ion in extracted DNA was determined by ICP-MS, which proved that these complexes target genomic DNA. And the strong affinity of the complexes with CT-DNA were confirmed by UV-Vis spectrum and circular dichroism (CD). The possible binding modes of the complexes with DNA were further explored by molecular docking. As the concentration of complexes 1-10 gradually increases, the fluorescence intensity of bovine serum albumin (BSA) decreases by a static quenching mechanism.
Collapse
Affiliation(s)
- Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China; National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China
| | - Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Xinjie Jia
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Hongming Liu
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China
| | - Tisan Xie
- School of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China.
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
7
|
Du LQ, Zhang TY, Huang XM, Xu Y, Tan MX, Huang Y, Chen Y, Qin QP. Synthesis and anticancer mechanisms of zinc(II)-8-hydroxyquinoline complexes with 1,10-phenanthroline ancillary ligands. Dalton Trans 2023; 52:4737-4751. [PMID: 36942929 DOI: 10.1039/d3dt00150d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Twenty new zinc(II) complexes with 8-hydroxyquinoline (H-Q1-H-Q6) in the presence of 1,10-phenanthroline derivatives (D1-D10) were synthesized and formulated as [Zn(Q1)2(D1)] (DQ1), [Zn(Q2)2(D2)]·CH3OH (DQ2), [Zn(Q1)2(D3)] (DQ3), [Zn(Q1)2(D4)] (DQ4), [Zn(Q3)2(D5)] (DQ5), [Zn(Q3)2(D4)] (DQ6), [Zn(Q4)2(D5)]·CH3OH (DQ7), [Zn(Q4)2(D6)] (DQ8), [Zn(Q4)2(D3)]·CH3OH (DQ9), [Zn(Q4)2(D1)]·H2O (DQ10), [Zn(Q5)2(D4)] (DQ11), [Zn(Q6)2(D6)]·CH3OH (DQ12), [Zn(Q5)2(D2)]·5CH3OH·H2O (DQ13), [Zn(Q5)2(D7)]·CH3OH (DQ14), [Zn(Q5)2(D8)]·CH2Cl2 (DQ15), [Zn(Q5)2(D9)] (DQ16), [Zn(Q5)2(D1)] (DQ17), [Zn(Q5)2(D5)] (DQ18), [Zn(Q5)2(D10)]·CH2Cl2 (DQ19) and [Zn(Q5)2(D3)] (DQ20). They were characterized using multiple techniques. The cytotoxicity of DQ1-DQ20 was screened using human cisplatin-resistant SK-OV-3/DDP ovarian cancer (SK-OV-3CR) cells and normal hepatocyte (HL-7702) cells. Complex DQ6 showed low IC50 values (2.25 ± 0.13 μM) on SK-OV-3CR cells, more than 3.0-8.0 times more cytotoxic than DQ1-DQ5 and DQ7-DQ20 (≥6.78 μM), and even 22.2 times more cytotoxic than the standard cisplatin, the corresponding free H-Q1-H-Q6 and D1-D10 alone (>50 μM). As a comparison, DQ1-DQ20 displayed nontoxic rates against healthy HL-7702 cells. Furthermore, DQ6 and DQ11 induced significant apoptosis via mitophagy pathways. DQ6 also significantly inhibited tumor growth in an in vivo SK-OV-3-xenograft model (ca. 49.7%). Thus, DQ6 may serve as a lead complex for the discovery of new antitumor agents.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Tian-Yu Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yue Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yuan Chen
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
8
|
Li J, Chen M, Jiang J, Huang J, Chen H, Pan L, Nesterov DS, Ma Z, Pombeiro AJL. A New Concept of Enhancing the Anticancer Activity of Manganese Terpyridine Complex by Oxygen-Containing Substituent Modification. Int J Mol Sci 2023; 24:ijms24043903. [PMID: 36835315 PMCID: PMC9963696 DOI: 10.3390/ijms24043903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Eleven manganese 4'-substituted-2,2':6',2″-terpyridine complexes (1a-1c and 2a-2h) with three non-oxygen-containing substituents (L1a-L1c: phenyl, naphthalen-2-yl and naphthalen-1-yl, L1a-L1c) and eight oxygen-containing substituents (L2a-L2h: 4-hydroxyl-phenyl, 3-hydroxyl-phenyl, 2-hydroxyl-phenyl, 4-methoxyl-phenyl, 4-carboxyl-phenyl, 4-(methylsulfonyl)phenyl, 4-nitrophenyl and furan-2-yl) were prepared and characterized by IR, elemental analysis or single crystal X-ray diffraction. In vitro data demonstrate that all of these show higher antiproliferative activities than cisplatin against five human carcinoma cell lines: A549, Bel-7402, Eca-109, HeLa and MCF-7. Compound 2d presents the strongest antiproliferative effect against A549 and HeLa cells, with IC50 values being 0.281 μM and 0.356 μM, respectively. The lowest IC50 values against Bel-7402 (0.523 μM) Eca-109 (0.514 μM) and MCF-7 (0.356 μM) were obtained for compounds 2h, 2g and 2c, respectively. Compound 2g with a nitro group showed the best results on the whole, with relevantly low IC50 values against all the tested tumor cells. The DNA interactions with these compounds were studied by circular dichroism spectroscopic and molecular modeling methods. Spectrophotometric results revealed that the compounds have strong affinities in binding with DNA as intercalators, and the binding induces DNA conformational transition. Molecular docking studies indicate that the binding is contributed by the π-π stacking and hydrogen bonds. The anticancer activities of the compounds are correlated with their DNA binding ability, and the modification of oxygen-containing substituents significantly enhanced the anticancer activity, which could provide a new rationale for the future design of terpyridine-based metal complexes with antitumor potential.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Min Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jieyou Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (L.P.); or (Z.M.)
| | - Dmytro S. Nesterov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Correspondence: (L.P.); or (Z.M.)
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
| |
Collapse
|
9
|
Panebianco R, Viale M, Loiacono F, Lanza V, Milardi D, Vecchio G. Terpyridine Glycoconjugates and Their Metal Complexes: Antiproliferative Activity and Proteasome Inhibition. ChemMedChem 2023; 18:e202200701. [PMID: 36773283 DOI: 10.1002/cmdc.202200701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
Metal terpyridine complexes have gained substantial interest in many application fields, such as catalysis and supramolecular chemistry. In recent years, the biological activity of terpyridine and its metal complexes has aroused considerable regard. On this basis, we synthesised new terpyridine derivatives of trehalose and glucose to improve the water solubility of terpyridine ligands and target them in cancer cells through glucose transporters. Glucose derivative and its copper(II) and iron(II) complexes showed antiproliferative activity. Interestingly, trehalose residue reduced the cytotoxicity of terpyridine. Moreover, we tested the ability of parent terpyridine ligands and their copper complexes to inhibit proteasome activity as an antineoplastic mechanism.
Collapse
Affiliation(s)
- Roberta Panebianco
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genova, Italy
| | - Fabrizio Loiacono
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genova, Italy
| | - Valeria Lanza
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, CNR, Via Paolo Gaifami 9, 95126, Catania, Italy
| | - Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, CNR, Via Paolo Gaifami 9, 95126, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
10
|
Li J, Yan H, Wang Z, Liu R, Luo B, Yang D, Chen H, Pan L, Ma Z. Copper chloride complexes with substituted 4'-phenyl-terpyridine ligands: synthesis, characterization, antiproliferative activities and DNA interactions. Dalton Trans 2021; 50:8243-8257. [PMID: 34036954 DOI: 10.1039/d0dt03989f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Eleven copper chloride coordination compounds (1-11) with 4'-(4'-substituted-phenyl)-2,2':6',2''-terpyridine ligands bearing hydrogen (L1), cyano (L2), p-hydroxyl (L3), m-hydroxyl (L4), o-hydroxyl (L5), methoxyl (L6), iodo (L7), bromo (L8), chloro (L9), fluoro (L10) or methylsulfonyl (L11) were prepared and characterized by IR spectroscopy, elemental analysis and single crystal X-ray diffraction. Antiproliferative activities against tumor cells were investigated and DNA interactions were studied by circular dichroism spectroscopy and molecular modeling methods. In vitro data demonstrate that all the compounds exhibit higher antiproliferative activities as compared to cisplatin against five human carcinoma cell lines: A549, Bel-7402, Eca-109, HeLa and MCF-7. Compound 6 with methoxyl shows the best anti-proliferation activity. Spectrophotometric results reveal the strong affinity of the compounds for binding with DNA as intercalators and induce DNA conformational transitions. The results of molecular docking studies show that the compounds interact with DNA through π-π stacking, van der Waals forces, hydrophobic interactions and hydrogen bonds. The binding energies between compound 11 and three macromolecules, including DNA duplex, oligonucleotide and DNA-Topo I complex, are the lowest. The binding stability of compounds containing hydroxyl, methoxy and methylsulfonyl groups with biological macromolecules mainly relies on the hydrogen bonds. The ability of a compound to form hydrogen bonds can promote its binding to biological targets, thereby exhibiting high antiproliferative activity.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Synthesis, characterization, photoluminescence, antiproliferative activity, and DNA interaction of cadmium(II) substituted 4′-phenyl-terpyridine compounds. J Inorg Biochem 2020; 210:111165. [DOI: 10.1016/j.jinorgbio.2020.111165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
|
12
|
Liu R, Yan H, Jiang J, Li J, Liang X, Yang D, Pan L, Xie T, Ma Z. Synthesis, Characterization, Photoluminescence, Molecular Docking and Bioactivity of Zinc (II) Compounds Based on Different Substituents. Molecules 2020; 25:molecules25153459. [PMID: 32751372 PMCID: PMC7436059 DOI: 10.3390/molecules25153459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023] Open
Abstract
Six new zinc(II) complexes were prepared by the reaction of ZnBr2 or ZnI2 with 4′-(substituted-phenyl)-2,2′:6′,2′′-terpyridine compounds, bearing p-methylsulfonyl (L1), p-methoxy (L2) and p-methyl (L3), which were characterized by elemental analysis, FT-IR, NMR and single crystal X-ray diffraction. The antiproliferative properties against Eca-109, A549 and Bel-7402 cell lines and the cytotoxicity test on RAW-264.7 of these compounds were monitored using a CCK-8 assay, and the studies indicate that the complexes show higher antiproliferative activities than cisplatin. The interactions of these complexes with CT-DNA and proteins (BSA) were studied by UV-Vis, circular dichroism (CD) and fluorescent spectroscopy, respectively. The results indicate that the interaction of these zinc(II) complexes with CT-DNA is achieved through intercalative binding, and their strong binding affinity to BSA is fulfilled through a static quenching mechanism. The simulation of the complexes with the CT-DNA fragment and BSA was studied by using molecular docking software. It further validates that the complexes interact with DNA through intercalative binding mode and that they have a strong interaction with BSA.
Collapse
Affiliation(s)
- Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China
| | - Hao Yan
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;
| | - Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Xing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China;
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| | - Tisan Xie
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| |
Collapse
|
13
|
β-Carboline copper complex as a potential mitochondrial-targeted anticancer chemotherapeutic agent: Favorable attenuation of human breast cancer MCF7 cells via apoptosis. Saudi J Biol Sci 2020; 27:2164-2173. [PMID: 32714043 PMCID: PMC7376190 DOI: 10.1016/j.sjbs.2020.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The development of preferentially selective cancer chemotherapeutics is a new trend in drug research. Thus, we designed and synthesized novel ternary complexes, [Cu(tryp)(Hnor)2(DMSO)]NO3 (1) and [Zn(tryp)(Hnor)2(DMSO)]NO3(2) (tryp = DL-Tryptophane; Hnor = Norharmane, β-carboline; DMSO = Dimethyl sulfoxide), characterized with elemental analysis, FTIR, UV–vis, FL, NMR, ESI-MS, and molar conductivity. Furthermore, the TD-DFT studies with UV–vis and FTIR validated the proposed structures of 1 and 2. Moreover, we evaluated the HOMO-LUMO energy gap and found that 1 has a smaller energy gap than 2. Then, 1 and 2 were assessed for anticancer chemotherapeutic potential against cancer cell lines MCF7 (human breast cancer) and HepG2 (human liver hepatocellular carcinoma) as well as the non-tumorigenic HEK293 (human embryonic kidney) cells. The MTT assay illustrated the preferentially cytotoxic behavior of 1 when compared with that of 2 and cisplatin (standard drug) against MCF7 cells. Moreover, 1 was exposed to MCF7 cells, and the results indicated the arrest of the G2/M phases, which followed the apoptotic pathway predominantly. Generation of ROS, GSH depletion, and elevation in LPO validated the redox changes prompted by 1. These studies establish the great potential of 1 as a candidate for anticancer therapeutics.
Collapse
|
14
|
Majumdar D, Agrawal Y, Thomas R, Ullah Z, Santra MK, Das S, Pal TK, Bankura K, Mishra D. Syntheses, characterizations, crystal structures, DFT/TD‐DFT, luminescence behaviors and cytotoxic effect of bicompartmental Zn (II)‐dicyanamide Schiff base coordination polymers: An approach to apoptosis, autophagy and necrosis type classical cell death. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5269] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of ChemistryTamralipta Mahavidyalaya Tamluk 721636 West Bengal India
- Department of Applied ChemistryIndian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| | - Yashika Agrawal
- National Center for Cell Science Pune 411007 Maharashtra India
| | - Renjith Thomas
- Department of ChemistrySt Berchmans College (Autonomous) Changanassery Kerala 686101 India
| | - Zakir Ullah
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon FunctionalizationInstitute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Manas K. Santra
- National Center for Cell Science Pune 411007 Maharashtra India
| | - Sourav Das
- Department of ChemistryInstitute of Infrastructure Technology Research and Management Ahmedabad 380026 Gujarat India
| | - Tapan K. Pal
- School of Liberal StudiesPandit Deendayal Petroleum University Gandhinagar 382421 India
| | - Kalipada Bankura
- Department of ChemistryTamralipta Mahavidyalaya Tamluk 721636 West Bengal India
| | - Dipankar Mishra
- Department of ChemistryTamralipta Mahavidyalaya Tamluk 721636 West Bengal India
| |
Collapse
|