1
|
Jakubek P, Suliborska K, Kuczyńska M, Asaduzzaman M, Parchem K, Koss-Mikołajczyk I, Kusznierewicz B, Chrzanowski W, Namieśnik J, Bartoszek A. The comparison of antioxidant properties and nutrigenomic redox-related activities of vitamin C, C-vitamers, and other common ascorbic acid derivatives. Free Radic Biol Med 2023; 209:239-251. [PMID: 37866756 DOI: 10.1016/j.freeradbiomed.2023.10.400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The term 'vitamin C' describes a group of compounds with antiscorbutic activity of l-ascorbic acid (AA). Despite AA's omnipresence in plant-derived foods, its derivatives have also been successfully implemented in the food industry as antioxidants, including the D-isomers, which lack vitamin C activity. This study aimed to determine the relationship between redox-related activities for five derivatives of AA using electrochemical, chemical, and biological approaches. Here we report that AA, C-vitamers, and other commonly consumed AA derivatives differ in their redox-related activities. As long as the physiological range of concentrations was maintained, there was no simple relationship between their redox properties and biological activity. Clear distinctions in antioxidant activity were observed mostly at high concentrations, which were strongly correlated with electrochemical and kinetic parameters describing redox-related properties of the studied compounds. Despite obvious similarities in chemical structures and antioxidant activity, we showed that C-vitamers may exhibit different nutrigenomic effects. Together, our findings provide a deeper insight into so far underinvestigated area combining chemical properties with biological activities of commonly applied AA derivatives.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdansk, Poland; Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland.
| | - Klaudia Suliborska
- Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdansk, Poland
| | - Monika Kuczyńska
- Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdansk, Poland
| | | | - Karol Parchem
- Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdansk, Poland
| | | | | | | | - Jacek Namieśnik
- Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdansk, Poland
| | - Agnieszka Bartoszek
- Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdansk, Poland
| |
Collapse
|
2
|
Robotti E, Belay MH, Calà E, Benedetto A, Cerruti S, Pezzolato M, Pennisi F, Abete MC, Marengo E, Brizio P. Identification of Illicit Conservation Treatments in Fresh Fish by Micro-Raman Spectroscopy and Chemometric Methods. Foods 2023; 12:foods12030449. [PMID: 36765978 PMCID: PMC9913940 DOI: 10.3390/foods12030449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In the field of food control for fresh products, the identification of foods subjected to illicit conservation treatments to extend their shelf life is fundamental. Fresh fish products are particularly subjected to this type of fraud due to their high commercial value and the fact that they often have to be transported over a long distance, keeping their organoleptic characteristics unaltered. Treatments of this type involve, e.g., the bleaching of the meat and/or the momentary abatement of the microbial load, while the degradation process continues. It is therefore important to find rapid methods that allow the identification of illicit treatments. The study presented here was performed on 24 sea bass samples divided into four groups: 12 controls (stored on ice in the fridge for 3 or 24 h), and 12 treated with a Cafodos-like solution for 3 or 24 h. Muscle and skin samples were then characterized using micro-Raman spectroscopy. The data were pre-processed by smoothing and taking the first derivative and then PLS-DA models were built to identify short- and long- term effects on the fish's muscle and skin. All the models provided the perfect classification of the samples both in fitting and cross-validation and an analysis of the bands responsible for the effects was also reported. To the best of the authors' knowledge, this is the first time Raman spectroscopy has been applied for the identification of a Cafodos-like illicit treatment, focusing on both fish muscle and skin evaluation. The procedure could pave the way for a future application directly on the market through the use of a portable device.
Collapse
Affiliation(s)
- Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy
- Correspondence: ; Tel.: +39-0131-360272
| | - Masho Hilawie Belay
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy
| | - Elisa Calà
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy
| | - Alessandro Benedetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Simone Cerruti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Francesco Pennisi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy
| | - Paola Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
3
|
Recombinant Expression of Archaeal Superoxide Dismutases in Plant Cell Cultures: A Sustainable Solution with Potential Application in the Food Industry. Antioxidants (Basel) 2022; 11:antiox11091731. [PMID: 36139805 PMCID: PMC9495943 DOI: 10.3390/antiox11091731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Superoxide dismutase (SOD) is a fundamental antioxidant enzyme that neutralises superoxide ions, one of the main reactive oxygen species (ROS). Extremophile organisms possess enzymes that offer high stability and catalytic performances under a wide range of conditions, thus representing an exceptional source of biocatalysts useful for industrial processes. In this study, SODs from the thermo-halophilic Aeropyrum pernix (SODAp) and the thermo-acidophilic Saccharolobus solfataricus (SODSs) were heterologously expressed in transgenic tomato cell cultures. Cell extracts enriched with SODAp and SODSs showed a remarkable resistance to salt and low pHs, respectively, together with optimal activity at high temperatures. Moreover, the treatment of tuna fillets with SODAp-extracts induced an extension of the shelf-life of this product without resorting to the use of illicit substances. The results suggested that the recombinant plant extracts enriched with the extremozymes could find potential applications as dietary supplements in the nutrition sector or as additives in the food preservation area, representing a more natural and appealing alternative to chemical preservatives for the market.
Collapse
|
4
|
Singh A, Mittal A, Benjakul S. Undesirable discoloration in edible fish muscle: Impact of indigenous pigments, chemical reactions, processing, and its prevention. Compr Rev Food Sci Food Saf 2021; 21:580-603. [PMID: 34859577 DOI: 10.1111/1541-4337.12866] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
Fish is rich in proteins and lipids, especially those containing polyunsaturated fatty acids, which made them vulnerable to chemical or microbial changes associated with quality loss. Meat color is one of vital criteria indicating the freshness, quality, and acceptability of the meat. Color of meat is governed by the presence of various pigments such as hemoglobin, myoglobin (Mb), and so on. Mb, particularly oxy-form, is responsible for the bright red color of fish muscle, especially tuna, and dark fleshed fish, while astaxanthin (AXT) directly determines the color of salmonids muscle. Microbial spoilage and chemical changes such as oxidation of lipid/proteins result in the autoxidation of Mb or fading of AXT, leading to undesirable color with lower acceptability. The discoloration has been affected by chemical composition, post-harvesting handling or storage, processing, cooking, and so on . To tackle discoloration of fish meat, vacuum or modified atmospheric packaging, low- or ultralow-temperature storage, uses of artificial and natural additives have been employed. This review article provides information regarding the factors affecting color and other quality aspects of fish muscle. Moreover, promising methodologies used to control discoloration are also focused.
Collapse
Affiliation(s)
- Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
5
|
Xu Y, Zhu Y. Complete Replacement of Nitrite With a Lactobacillus fermentum on the Quality and Safety of Chinese Fermented Sausages. Front Microbiol 2021; 12:704302. [PMID: 34421863 PMCID: PMC8371913 DOI: 10.3389/fmicb.2021.704302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
This study investigated the positive effects of complete replacement of nitrite with a Lactobacillus fermentum on the quality and safety of Chinese fermented sausages, and evaluated the risk of this strain. The effects of the strain on pH, color, nitrite, thiobarbituric acid reactive substances (TBARS), total volatile basenitrogen (TVB-N), metmyoglobin (Met-Mb), biological amines, free amino acid content, and sensory index have been studied. The results revealed that the strain reduced the pH of the sausages, which reduced the risk of food-borne pathogens, and accelerated the acidification and gelation process. The inoculation of the strain produced pink color similar to 50 mg/kg nitrite, significantly reducing the residual risk of nitrite in the sausages. In addition, the strain effectively improved quality and nutrition of the sausages through preventing fat oxidation, protein decomposition, and myoglobin oxidation and increasing free amino acid content. The harmful biogenic amines species of the treated sample were reduced, although the tyramine contents were higher than the control, and the contents of the two groups were all far below the specified limit (800 mg/kg). The sensory analysis showed that the strain enhanced the taste, flavor, sourness, and overall acceptability of the sample sausages. Therefore, replacing nitrite completely with the strain L. fermentum could be a potential strategy to produce healthier and safer acceptable sausages through decreasing the risk of nitrite and improving nutrition and quality of the sausages.
Collapse
Affiliation(s)
- Yuning Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yinglian Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
6
|
Zhu Y, Guo L, Yang Q. Partial replacement of nitrite with a novel probiotic Lactobacillus plantarum on nitrate, color, biogenic amines and gel properties of Chinese fermented sausages. Food Res Int 2020; 137:109351. [DOI: 10.1016/j.foodres.2020.109351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
|
7
|
Hassoun A, Carpena M, Prieto MA, Simal-Gandara J, Özogul F, Özogul Y, Çoban ÖE, Guðjónsdóttir M, Barba FJ, Marti-Quijal FJ, Jambrak AR, Maltar-Strmečki N, Kljusurić JG, Regenstein JM. Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review. Antioxidants (Basel) 2020; 9:E882. [PMID: 32957633 PMCID: PMC7555908 DOI: 10.3390/antiox9090882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Consumer demand for food of high quality has driven research for alternative methods of food preservation on the one hand, and the development of new and rapid quality assessment techniques on the other hand. Recently, there has been a growing need and interest in healthier food products, which has led to an increased interest in natural preservatives, such as essential oils, plant extracts, and edible films and coatings. Several studies have shown the potential of using biopreservation, natural antimicrobials, and antioxidant agents in place of other processing and preservation techniques (e.g., thermal and non-thermal treatments, freezing, or synthetic chemicals). Changes in food quality induced by the application of natural preservatives have been commonly evaluated using a range of traditional methods, including microbiology, sensory, and physicochemical measurements. Several spectroscopic techniques have been proposed as promising alternatives to the traditional time-consuming and destructive methods. This review will provide an overview of recent studies and highlight the potential of spectroscopic techniques to evaluate quality changes in food products following the application of natural preservatives.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, 9291 Tromsø, Norway
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | - Yeşim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | | | - María Guðjónsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 113 Reykjavík, Iceland;
- Matis, Food and Biotech R&D, 113 Reykjavík, Iceland
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Francisco J. Marti-Quijal
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Nadica Maltar-Strmečki
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička c. 54, 10 000 Zagreb, Croatia;
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| |
Collapse
|