1
|
Pang Y, Meng Q, Cui Y, Liu S, Jiang H, Xu C, An Y, Jiao Y, Zhang Q, Nie J. Radiosensitization effect of iridium (III) complex on lung cancer cells via mitochondria apoptosis pathway. Front Pharmacol 2025; 16:1562228. [PMID: 40230690 PMCID: PMC11994930 DOI: 10.3389/fphar.2025.1562228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Background Lung cancer is the leading cause of cancer-related death in the worldwide. Although cisplatin and other platinum-based drugs are widely used as radiosensitizers in radiotherapy and considered the first-line treatment for advanced lung cancer, their clinical utility is often limited by drug resistance and severe cytotoxic side effects. In recent years, iridium-based complexes and other transition metal cation complexes with similar structural properties have garnered increasing research interest due to their potential anticancer properties. Methods Recently, we synthesized a novel iridium (III) complex (Ir-1) and evaluated its safety and stability. The present study aimed to identify Ir-1 with potent anticancer activity by assessing its cytotoxic effects on lung cancer cells in vitro. Additionally, it investigated Ir-1's radiosensitizing efficacy and the underlying mechanisms. Results The results demonstrated that Ir-1 exhibited significant radiosensitizing effects on lung cancer cells. Ir-1 effectively reduced cell viability and colony formation, arrested the cell cycle at the G2/M phase, inhibited cell migration and invasion, decreased mitochondrial membrane potential, and increased reactive oxygen species (ROS) generation in lung cancer cells. Importantly, these cytotoxic effects were selective, with minimal impact on normal cells. Mechanistic studies showed that Ir-1 enhanced radiation-induced cancer cell death by disrupting mitochondrial function and activating the mitochondrial apoptotic pathway. This was evidenced by upregulated expression levels of Bax, Cytochrome c (Cyt-C), and Caspase9 proteins, along with reduced level of Bcl-2 protein. Notably, the addition of a Cyt-C inhibitor significantly reduced the expression of Cyt-C and Caspase9 proteins. Similarly, treatment with the Caspase9 inhibitor Z-LEHD-FMK also reduced Caspase9 protein level. Conclusion This study provides robust evidence that Ir-1 is a promising and safe radiosensitizer for lung cancer therapy. Its ability to enhance radiation-induced cytotoxicity through mitochondrial dysfunction and activation of apoptotic pathways highlights its potential for clinical application.
Collapse
Affiliation(s)
- Yuru Pang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Qiqi Meng
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yangchen Cui
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Shiyi Liu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Huihui Jiang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chenlan Xu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yan An
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Key Laboratory of Radiation Damage and Treatment of Jiangsu Provincial Universities and Colleges, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Qi Zhang
- Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jihua Nie
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
- Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Hu H, Zhang F, Sheng Z, Tian S, Li G, Tang S, Niu Y, Yang J, Liu Y. Synthesis and mitochondria-localized iridium (III) complexes induce cell death through pyroptosis and ferroptosis pathways. Eur J Med Chem 2024; 268:116295. [PMID: 38437750 DOI: 10.1016/j.ejmech.2024.116295] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
This paper introduces a new ligand, 4,6-dichloro-5-(1H-imidazo [4,5-f]phenanthroline-2-yl)pyrimidin-2-amine (DPPA), and its corresponding new iridium(III) complexes: [Ir(ppy)2(DPPA)](PF6) (2a) (where ppy represents deprotonated 2-phenylpyridine), [Ir(bzq)2(DPPA)](PF6) (2b) (with bzq indicating deprotonated benzo[h]quinoline), and [Ir(piq)2(DPPA)](PF6) (2c) (piq denoting deprotonated 1-phenylisoquinoline). The cytotoxic effects of both DPPA and 2a, 2b, and 2c were evaluated against human lung carcinoma A549, melanoma B16, colorectal cancer HCT116, human hepatocellular carcinoma HepG2 cancer cell lines, as well as the non-cancerous LO2 cell line using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. While DPPA exhibited moderate anticancer activity toward A549, B16, HCT116 and HepG2 cells, complexes 2a, 2b, and 2c displayed remarkable efficacy against A549, B16, and HCT116 cells. The cell colonies and wound healing were investigated. Moreover, various aspects of the anticancer mechanisms were explored. The cell cycle analyses revealed that the complexes block cell proliferation of A549 cells during the S phase. Complex 2c induce an early apoptosis, while 2a and 2b cause a late apoptosis. The interaction of 2a, 2b and 2c with endoplasmic reticulum and mitochondria was identified, leading to elevated ROS and Ca2+ amounts. This resulted in a reduced mitochondrial membrane potential, mitochondrial permeability transition pore opening, and an increase of cytochrome c. Also, ferroptosis was investigated through measurements of intracellular glutathione (GSH), malondialdehyde (MDA), and recombinant glutathione peroxidase (GPX4) protein expression. The pyroptosis was explored via cell morphology, release of lactate dehydrogenase (LDH) and expression of pyroptosis-related proteins. RNA sequencing was applied to examine the signaling pathways. Western blot analyses illuminated that the complexes regulate the expression of Bcl-2 family proteins. Additionally, an in vivo antitumor study demonstrated that complex 2c exhibited a remarkable inhibitory rate of 58.58% in restraining tumor growth. In summary, the findings collectively suggest that the iridium(III) complexes induce cell death via ferroptosis, apoptosis by a ROS-mediated mitochondrial dysfunction pathway and GSDMD-mediated pyroptosis.
Collapse
Affiliation(s)
- Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Fan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhujun Sheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shuang Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Gechang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shuanghui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yajie Niu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jiawan Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Chen Y, Li W, Yang Y, Zhong R, Hu H, Huang C, Chen J, Liang L, Liu Y. Significant increase of anticancer efficacy in vitro and in vivo of liposome entrapped ruthenium(II) polypyridyl complexes. Eur J Med Chem 2023; 257:115541. [PMID: 37295162 DOI: 10.1016/j.ejmech.2023.115541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Two polypyridyl ruthenium(II) complexes [Ru(DIP)2(BIP)](PF6)2 (DIP = 4,7-diphenyl-1,10-phenanthrolie, BIP = 2-(1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru1) and [Ru(DIP)2(CBIP)](PF6)2 (CBIP = 2-(4'-chloro-1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru2) were synthesized. The cytotoxic activities in vitro of Ru1, Ru2 toward B16, A549, HepG2, SGC-7901, HeLa, BEL-7402, non-cancer LO2 were investigated using MTT method (3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide). Unexpectedly, Ru1, Ru2 can't prevent these cancer cells proliferation. To improve the anti-cancer effect, we used liposomes to entrap the complexes Ru1, Ru2 to form Ru1lipo, Ru2lipo. As expectation, Ru1lipo and Ru2lipo exhibit high anti-cancer efficacy, especially, Ru1lipo (IC50 3.4 ± 0.1 μM), Ru2lipo (IC50 3.5 ± 0.1 μM) display strong ability to block the cell proliferation in SGC-7901. The cell colony, wound healing, and cell cycle distribution show that the complexes can validly inhibit the cell growth at G2/M phase. Apoptotic studied with Annex V/PI doubling method showed that Ru1lipo and Ru2lipo can effectively induce apoptosis. Reactive oxygen species (ROS), malondialdehyde, glutathione and GPX4 demonstrate that Ru1lipo and Ru2lipo improve ROS and malondialdehyde levels, inhibit generation of glutathione, and finally result in a ferroptosis. Ru1lipo and Ru2lipo interact on the lysosomes and mitochondria and damage mitochondrial dysfunction. Additionally, Ru1lipo and Ru2lipo increase intracellular Ca2+ concentration and induce autophagy. The RNA-sequence and molecular docking were performed, the expression of Bcl-2 family was investigated by Western blot analysis. Antitumor in vivo experiments confirm that 1.23 mg/kg, 2.46 mg/kg of Ru1lipo possesses a high inhibitory rate of 53.53% and 72.90% to prevent tumor growth, hematoxylin-eosin (H&E) results show that Ru1lipo doesn't cause chronic organ damage and strongly promotes the necrosis of solid tumor. Taken together, we conclude that Ru1lipo and Ru2lipo cause cell death through the following pathways: autophagy, ferroptosis, ROS-regulated mitochondrial dysfunction, and blocking the PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Ruitong Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
4
|
Yang T, Zhu M, Jiang M, Yang F, Zhang Z. Current status of iridium-based complexes against lung cancer. Front Pharmacol 2022; 13:1025544. [PMID: 36210835 PMCID: PMC9538862 DOI: 10.3389/fphar.2022.1025544] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors, with the highest mortality rate in the world, and its incidence is second only to breast cancer. It has posed a serious threat to human health. Cisplatin, a metal-based drug, is one of the most widely used chemotherapeutic agents for the treatment of various cancers. However, its clinical efficacy is seriously limited by numerous side effects and drug resistance. This has led to the exploration and development of other transition metal complexes for the treatment of malignant tumors. In recent years, iridium-based complexes have attracted extensive attention due to their potent anticancer activities, limited side effects, unique antitumor mechanisms, and rich optical properties, and are expected to be potential antitumor drugs. In this review, we summarize the recent progress of iridium complexes against lung cancer and introduce their anti-tumor mechanisms, including apoptosis, cycle arrest, inhibition of lung cancer cell migration, induction of immunogenic cell death, etc.
Collapse
Affiliation(s)
- Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- School of food and biochemical engineering, Guangxi Science and Technology Normal University, Laibin, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
- *Correspondence: Zhenlei Zhang,
| |
Collapse
|
5
|
Li W, Wu X, Liu H, Shi C, Yuan Y, Bai L, Liao X, Zhang Y, Liu Y. Enhanced in vitro cytotoxicity and antitumor activity in vivo of iridium(III) complexes liposomes targeting endoplasmic reticulum and mitochondria. J Inorg Biochem 2022; 233:111868. [DOI: 10.1016/j.jinorgbio.2022.111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023]
|
6
|
Zhang Y, Fei W, Zhang H, Zhou Y, Tian L, Hao J, Yuan Y, Li W, Liu Y. Increasing anticancer effect in vitro and vivo of liposome-encapsulated iridium(III) complexes on BEL-7402 cells. J Inorg Biochem 2021; 225:111622. [PMID: 34624670 DOI: 10.1016/j.jinorgbio.2021.111622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023]
Abstract
The studies of iridium (III) complexes as potent anticancer reagents have attracted great attention. Here, a new iridium (III) complex [Ir(bzq)2(PYIP)](PF6) (Ir1, bzq = benzo[h]quinoline, PYIP = 2-(pyren-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) was synthesized and its liposomes (Ir1Lipo) was prepared. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to detect the cytotoxic activity of Ir1 and Ir1Lipo on HepG2, SGC-7901, BEL-7402, HeLa, B16, A549 and normal NIH3T3 cells. The complex Ir1 displays no obvious inhibitory effect on the growth of BEL-7402 cells, while the Ir1Lipo shows significant cytotoxic activity on BEL-7402 cells (IC50 = 2.6 ± 0.03 μM). In further studies, Ir1Lipo induced apoptosis by the mitochondrial pathways, such as increasing intracellular reactive oxygen species (ROS) content and intracellular Ca2+ level, decreasing the mitochondrial membrane potential (MMP). In addition, after incubation with Ir1Lipo, the colony formation of BEL-7402 cells was significantly inhibited. Moreover, flow cytometry was used to detect the impact of Ir1Lipo on cell cycle distribution, and western blot was used to detect the expression of caspases and Bcl-2 (B-cell lymphoma-2) family proteins. Furthermore, Ir1Lipo exhibited significant antitumor activity in vivo with an inhibitory rate of 65.8%. These results indicated that Ir1Lipo induces apoptosis in BEL-7402 cells through intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zejiang University School of Medicine, Hangzhou 310006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Zhou Y, Bai L, Tian L, Yang L, Zhang H, Zhang Y, Hao J, Gu Y, Liu Y. Iridium(III)-BBIP complexes induce apoptosis via PI3K/AKT/mTOR pathway and inhibit A549 lung tumor growth in vivo. J Inorg Biochem 2021; 223:111550. [PMID: 34311319 DOI: 10.1016/j.jinorgbio.2021.111550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The new ligand BBIP (BBIP = 2-(7-bromo-2H-benzo[d]imidazole-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) with its iridium(III) complexes: [Ir(ppy)2(BBIP)](PF6) (ppy = 2-phenylpyridine, Ir1), [Ir(bzq)2(BBIP)](PF6) (bzq = benzo[h]quinolone, Ir2) and [Ir(piq)2(BBIP)](PF6) (piq = 1-phenylisoquinoline, Ir3) were synthesized and characterized by elemental analysis, High Resolution Mass Spectrometer (HRMS), 1H NMR and 13C{1H} NMR. The cytotoxicity of the complexes against A549, HepG2, SGC-7901, BEL-7402, HeLa and normal LO2 was evaluated through 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. The results show that Ir1 exhibits high cytotoxic activity against A549 cells with a low IC50 value of 4.9 ± 0.5 μM. A series of biological activities such as cell cycle arrest, endoplasmic reticulum localization assay, apoptosis, western blotting, cellular uptake determination and in vivo antitumor activity were investigated. The assays implied that the complexes inhibit cancer cell migration through blocking mitotic progress. Cell cycle distribution stated that the complexes depress cell growth at G0/G1 phase. Additionally, the complexes acted on the endoplasmic reticulum and induce apoptosis through endoplasmic reticulum stress pathway. Especially, the western blotting showed that the complexes activated Bcl-2 (B-cell lymphoma-2) family and decreased PI3K (phosphoinositide-3 kinase) and AKT (protein kinase B), up-regulated the expression of mTOR (mammalian target of rapamycin) and p-mTOR (phosphorylated mammalian target of rapamycin). Therefore, the complexes induce apoptosis through activating PI3K-AKT-mTOR pathway. Antitumor in vivo demonstrated that Ir1 can effectively prevent the tumor growth with an inhibitory rate of 48.89%.
Collapse
Affiliation(s)
- Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Linlin Yang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou 510010, PR China.
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yiying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
8
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. Systematic evaluation of the antitumor activity of three ruthenium polypyridyl complexes. J Inorg Biochem 2021; 225:111616. [PMID: 34555601 DOI: 10.1016/j.jinorgbio.2021.111616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
Ruthenium-containing complexes have emerged as good alternative to the currently used platinum-containing drugs for malignant tumor therapy. In this work, cytotoxic effects of recently synthesized ruthenium polypyridyl complexes [Ru(bpy)2(CFPIP)](ClO4)2 (bpy = 2,2'-bipyridine, CFPIP = (E)-2-(4-fluorostyryl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru(II)-1), [Ru(phen)2(CFPIP)](ClO4)2 (phen = 1,10-phenanthroline, Ru(II)-2) and [Ru(dmb)2(CFPIP)](ClO4)2 (dmb = 4,4'-dimethyl-2,2'-bipyridine, Ru(II)-3) toward different tumor cells were investigated in vitro and compared with cisplatin, the most widely used chemotherapeutic drug against hepatocellular carcinoma (HepG-2). The results demonstrate that target complexes show excellent cytotoxicity against HepG-2 cells with low IC50 value of 21.4 ± 1.5, 18.0 ± 2.1 and 22.3 ± 1.7 μM, respectively. It was important noting that target Ru(II) complexes exhibited better antitumor activity than cisplatin (IC50 = 28.5 ± 2.4 μM) against HepG-2 cells, and has no obvious toxicity to normal cell LO2. DNA binding results suggest that Ru(II)-1, Ru(II)-2 and Ru(II)-3 interact with CT DNA (calf thymus DNA) through intercalative mode. Complexes exerted its antitumor activity through increasing anti-migration and inducing cell cycle arrest at the S phase. In addition, the apoptosis was tested by AO (acridine orange)/EB (ethidium bromide) staining and flow cytometry. Mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and colocalization tests were also evaluated by ImageXpress Micro XLS system. Overall, the results show that the ruthenium polypyridyl complexes induce apoptosis in HepG-2 cells through ROS-mediated mitochondria dysfunction pathway.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
9
|
Tian L, Zhang Y, Zhang H, Zhou Y, Li W, Yuan Y, Hao J, Yang L, Liu Y. Synthesis and evaluation of iridium(III) complexes on antineoplastic activity against human gastric carcinoma SGC-7901 cells. J Biol Inorg Chem 2021; 26:705-714. [PMID: 34448071 DOI: 10.1007/s00775-021-01895-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
The study was intended to determine the antineoplastic effects of two new iridium(III) complexes [Ir(ppy)2(PTTP)](PF6) (1) (ppy = 2-phenylpyridine) and [Ir(piq)2(PTTP)](PF6) (2) (piq = 1-phenylisoquinoline, PTTP = 2-phenoxy-1,4,8,9-tetraazatriphenylene). In MTT assay, the ligand PTTP displayed ineffective inhibition on cell growth in SGC-7901, BEL-7402, HepG2 as well as NIH3T3 cell lines, while complexes 1 and 2 showed high cytotoxic activity on SGC-7901 cells with an IC50 value of 0.5 ± 0.1 µM and 4.4 ± 0.6 µM, respectively. Cellular uptake, cell cloning experiments, wound healing assay and cell cycle arrest indicated that the two complexes can inhibit the cell proliferation in SGC-7901 and induce cell cycle arrest at G0/G1 phase. Additionally, reactive oxygen species (ROS) and mitochondrial membrane potential suggested that the two complexes induced cell apoptosis through disrupting mitochondrial functions. Further, western blot analysis illustrated that the two complexes caused apoptosis via regulating expression levels of Bcl-2 family proteins. Moreover, complex 1 could suppress tumor growth in vivo with an inhibitory rate of 49.41%. Altogether, these results demonstrated that complexes 1 and 2 exert a potent anticancer effect against SGC-7901 cells via mitochondrial apoptotic pathway and have a potential to be developed as antineoplastic drug candidates for human gastric cancer.
Collapse
Affiliation(s)
- Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Linlin Yang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, 510010, People's Republic of China.
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
10
|
Zhang H, Tian L, Xiao R, Zhou Y, Zhang Y, Hao J, Liu Y, Wang J. Anticancer effect evaluation in vitro and in vivo of iridium(III) polypyridyl complexes targeting DNA and mitochondria. Bioorg Chem 2021; 115:105290. [PMID: 34426145 DOI: 10.1016/j.bioorg.2021.105290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022]
Abstract
To investigate the antitumor effect of iridium complexes, three iridium (III) complexes [Ir(ppy)2(dcdppz)]PF6 (ppy = 2-phenylpyridine, dcdppz = 11,12-dichlorodipyrido[3,2-a:2',3'-c]phenazine) (Ir1), [Ir(bzq)2(dcdppz)]PF6 (bzq = benzo[h]quinoline) (Ir2) and [Ir(piq)2(dcdppz)]PF6 (piq = 1-phenylisoquinoline) (Ir3) were synthesized and characterized. Geometry optimization, molecular dynamics simulation and docking studies have been performed to further explore the antitumor mechanism. The cytotoxicity of Ir1-3 toward cancer cells was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The localization of complexes Ir1-3 in the mitochondria, intracellular accumulation of reactive oxygen species (ROS) levels, the changes of mitochondrial membrane potential and morphological changes in apoptosis were investigated. Flow cytometry was applied to quantify fluorescence intensity and determine cell cycle distribution. Western blotting was used to detect the expression of apoptosis-related proteins. The anti-tumor effect of Ir1 in vivo was evaluated. The results showed that Ir1-3 had high cytotoxicity to most tumor cells, especially to SGC-7901 cells with a low IC50 value. Ir1-3 can increase the intracellular ROS levels, reduce the mitochondrial membrane potential. Additionally, the complexes induce an increase of apoptosis-related protein expression, enhance the percentage of apoptosis. The complexes inhibit the cell proliferation at G0/G1 phase. The results obtained from antitumor in vivo indicate that Ir1 can significantly inhibit the growth of tumors with an inhibitory rate of 54.08%. The docking studies show that complexes Ir1-3 interact with DNA through minor-groove intercalation, which increases the distance of DNA base pairs, leading to a change of DNA helix structure. These experimental and theoretical findings indicate that complexes Ir1-3 can induce apoptosis in SGC-7901 cells through the mitochondrial dysfunction and DNA damage pathways, and then exerting anti-tumor activity in vitro and vivo.
Collapse
Affiliation(s)
- Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Rongxing Xiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Juping Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Ye RR, Peng W, Chen BC, Jiang N, Chen XQ, Mao ZW, Li RT. Mitochondria-targeted artesunate conjugated cyclometalated iridium(iii) complexes as potent anti-HepG2 hepatocellular carcinoma agents. Metallomics 2021; 12:1131-1141. [PMID: 32453319 DOI: 10.1039/d0mt00060d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) poses a serious threat to people's health worldwide. Artesunate (ART), one of the classical antimalarial drugs, has recently been shown to exert significant cytotoxicity in various cancers, but its bioavailability is low. Cyclometalated iridium(iii) complexes have emerged as a promising class of anticancer therapeutic agents. Herein, through conjugation of two of them, three novel Ir(iii)-ART conjugates, [Ir(C-N)2(bpy-ART)](PF6) (bpy = 2,2'-bipyridine, C-N = 2-phenylpyridine (ppy, Ir-ART-1), 2-(2-thienyl)pyridine (thpy, Ir-ART-2), and 2-(2,4-difluorophenyl)pyridine (dfppy, Ir-ART-3)) have been synthesized, and their potential as anti-HCC agents was evaluated. We demonstrate that Ir-ART-1-3 display higher cytotoxicity against HCC cell lines than normal liver cells, and they can especially locate to mitochondria of HepG2 cells and induce a series of mitochondria-mediated apoptosis events. Moreover, Ir-ART-1-3 can regulate the cell cycle and inhibit metastasis of HepG2 cells. Finally, in vivo antitumor evaluation also demonstrates the inhibitory activity of Ir-ART-1 on tumor growth. Taken together, these Ir(iii)-ART conjugates have the potential to become drug candidates for future anti-HCC treatments.
Collapse
Affiliation(s)
- Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Wan Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Bi-Chun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Ning Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Xuan-Qin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| |
Collapse
|
12
|
Hao J, Zhang H, Tian L, Yang L, Zhou Y, Zhang Y, Liu Y, Xing D. Evaluation of anticancer effects in vitro of new iridium(III) complexes targeting the mitochondria. J Inorg Biochem 2021; 221:111465. [PMID: 33989986 DOI: 10.1016/j.jinorgbio.2021.111465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Iridium(III) complexes have the potential to serve as novel therapeutic drugs for treating tumor. In this work, three new complexes [Ir(ppy)2(cdppz)](PF6) (1) (ppy = 2-phenylpyridine, cdppz = 11-chlorodipyrido[3,2-a,2',3'-c]phenazine), [Ir(bzq)2(cdppz)](PF6) (2) (bzq = benzo[h]quinolone) and [Ir(piq)2(cdppz)](PF6) (3) (piq = 1-phenylisoquinoline) were prepared as well as characterized. MTT (3-(4,5-dimethylthiazole)-2,5-diphenyltetraazolium bromide) assay revealed that the complex 2 exerted potent cytotoxicity against to various cancer cells lines and particularly for SGC-7901 cells. Meanwhile, the complexes could suppress cell colonies formation and migration ability. Apoptosis assays of AO/EB staining as well as flow cytometry revealed that the synthesized complexes may cause apoptosis of SGC-7901 cells. Moreover, the decline of mitochondrial membrane potential (MMP), elevation of intracellular reactive oxygen species (ROS) levels and release of cytochrome c demonstrated the complexes could cause apoptosis mainly through the mitochondrial death pathway and arrest cell at G0/G1 phase. Additionally, the complexes have significant influence on the expression of proteins which is interrelated to cell apoptosis. In summary, our studies provided fundamental information regarding the further study of the possible anticancer mechanisms of iridium (III) complexes.
Collapse
Affiliation(s)
- Jing Hao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Linlin Yang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou 510000, PR China.
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Degang Xing
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
13
|
Chen BB, Pan NL, Liao JX, Huang MY, Jiang DC, Wang JJ, Qiu HJ, Chen JX, Li L, Sun J. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer and antibacterial agents to induce both autophagy and apoptosis. J Inorg Biochem 2021; 219:111450. [PMID: 33826973 DOI: 10.1016/j.jinorgbio.2021.111450] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/28/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial damage will hinder the energy production of cells and produce excessive ROS (reactive oxygen species), resulting in cell death through autophagy or apoptosis. In this paper, four cyclometalated iridium(III) complexes (Ir1: [Ir(piq)2L]PF6; Ir2: [Ir(bzq)2L]PF6; Ir3: [Ir(dfppy)2L]PF6; Ir4: [Ir(thpy)2L]PF6; piq = 1-phenylisoquinoline; bzq = benzo[h]quinoline; dfppy = 2-(2,4-difluorophenyl)pyridine;thpy = 2-(2-thienyl)pyridine; L = 1,10-phenanthroline-5-amine) were synthesized and characterized. Cytotoxicity tests show that these complexes have excellent cytotoxicity to cancer cells, and mechanism studies indicatethat these complexes can specifically target mitochondria. Complexes Ir1 and Ir2 can damage the function of mitochondria, subsequently increasing intracellular levels of ROS, decreasing MMP (mitochondrial membrane potential), and interfering with ATP energy production, which leads to autophagy and apoptosis. Furthermore, autophagy induced by Ir1 and Ir2 can promote cell death in coordination with apoptosis. Surprisingly, these four complexes also showed moderate antibacterial activity to S. aureusand P. aeruginosa.
Collapse
Affiliation(s)
- Bing-Bing Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Pharmacy Department, The People's Hospital of Gaozhou, Maoming 525200, China
| | - Nan-Lian Pan
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Min-Ying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dong-Chun Jiang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Jie Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Hai-Jun Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jia-Xi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Lin Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
14
|
Wu K, Ho S, Wu C, Wang HD, Ma D, Leung C. Simultaneous blocking of the pan-RAF and S100B pathways as a synergistic therapeutic strategy against malignant melanoma. J Cell Mol Med 2021; 25:1972-1981. [PMID: 33377602 PMCID: PMC7882986 DOI: 10.1111/jcmm.15994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma is a very aggressive form of skin cancer. Although BRAF inhibitors have been utilized for melanoma therapy, advanced melanoma patients still face a low five-year survival rate. Recent studies have shown that CRAF can compensate for BRAF depletion via regulating DNA synthesis to remain melanoma proliferation. Hence, targeting CRAF either alone or in combination with other protein pathways is a potential avenue for melanoma therapy. Based on our previously reported CRAF-selective inhibitor for renal cancer therapy, we have herein discovered an analogue (complex 1) from the reported CRAF library suppresses melanoma cell proliferation and melanoma tumour growth in murine models of melanoma via blocking the S100B and RAF pathways. Intriguingly, we discovered that inhibiting BRAF together with S100B exerts a novel synergistic effect to significantly restore p53 transcription activity and inhibit melanoma cell proliferation, whereas blocking BRAF together with CRAF only had an additive effect. We envision that blocking the pan-RAF and S100B/p53 pathways might be a novel synergistic strategy for melanoma therapy and that complex 1 is a potential inhibitor against melanoma via blocking the pan-RAF and S100B pathways.
Collapse
Affiliation(s)
- Ke‐Jia Wu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Shih‐Hsin Ho
- State Key Laboratory of Urban Water Resource and EnvironmentSchool of EnvironmentHarbin Institute of TechnologyHarbinChina
| | - Chun Wu
- Department of ChemistryHong Kong Baptist UniversityKowloon TongHong Kong
| | - Hui‐Min D. Wang
- Graduate Institute of Biomedical Engineering National Chung Hsing UniversityTaichungTaiwan
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical Laboratory Science and BiotechnologyChina Medical UniversityTaichung CityTaiwan
| | - Dik‐Lung Ma
- Department of ChemistryHong Kong Baptist UniversityKowloon TongHong Kong
| | - Chung‐Hang Leung
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
15
|
Wu KJ, Wu C, Chen F, Cheng SS, Ma DL, Leung CH. Time-Resolved Luminescent High-Throughput Screening Platform for Lysosomotropic Compounds in Living Cells. ACS Sens 2021; 6:166-174. [PMID: 33356166 DOI: 10.1021/acssensors.0c02046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysosomes are membrane-bound organelles that regulate protein degradation and cellular organelle recycling. Homeostatic alteration by lysosomotropic compounds has been suggested as a potential approach for the treatment of cancer. However, because of the high false-negative rate resulting from strong fluorescent background noise, few luminescent high-throughput screening methods for lysosomotropic compounds have been developed for cancer therapy. Imidazole is a five-membered heterocycle that can act within the acidic interior of lysosomes. To develop an efficient lysosomotropic compound screening system, we introduced an imidazole group to iridium-based complexes and designed a long-lifetime lysosomal probe to monitor lysosomal activity in living cells. By integrating time-resolved emission spectroscopy (TRES) with the novel iridium-based lysosomal probe, a high-throughput screening platform capable of overcoming background fluorescent interference in living cells was developed for discovering lysosomotropic drugs. As a proof-of-concept, 400 FDA/EMA-approved drugs were screened using the TRES system, revealing five compounds as potential lysosomotropic agents. Significantly, the most promising potent lysosomotropic compound (mitoxantrone) identified in this work would have showed less activity if screened using a commercial lysosomal probe because of interference from the intrinsic fluorescence of mitoxantrone. We anticipate that this TRES-based high-throughput screening system could facilitate the development of more lysosomotropic drugs by avoiding false results arising from the intrinsic fluorescence of both bioactive compounds and/or the cell background.
Collapse
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Sha-Sha Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| |
Collapse
|
16
|
Studies of anticancer activity in vivo and in vitro behaviors of liposomes encapsulated iridium(III) complex. J Biol Inorg Chem 2021; 26:109-122. [PMID: 33475857 DOI: 10.1007/s00775-020-01841-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Iridium(III) complexes have gained great attention in cancer treatment in recent years. In this paper, we designed and synthesized a new iridium(III) complex [Ir(piq)2(DQTT)](PF6) Ir1 (piq = 1-phenylisoquinoline, DQTT = 12-(1,4-dihydroquinoxalin-6-yl)-4,5,9,14-tetraazabenzo[b]triphenylene). The Ir1-loaded PEGylated liposomes (Lipo-Ir1) were prepared using the ethanol injection method. The anticancer activity of the complex and Lipo-Ir1 against SGC-7901 (human gastric adenocarcinoma), A549 (human lung carcinoma), HeLa (human cervical carcinoma), HepG2 (human hepatocellular carcinoma), BEL-7402 (human hepatocellular carcinoma), and normal NIH3T3 (mouse embryonic fibroblasts) was tested by the MTT method. The complex Ir1 shows moderate or low cytotoxicity against the selected cancer cells, whereas the Lipo-Ir1 exhibits high anticancer activity toward the same cancer cells. The apoptosis induced by Lipo-Ir1 was assayed by flow cytometry and Lipo-Ir1 induced apoptosis through increasing intracellular reactive-oxygen species levels, decreasing mitochondrial membrane potential, further promoting cytochrome c release and causing the increase of level of intracellular Ca2+. Western blot was used to detect the changes in Bcl-2 family protein and PI3K/AKT pathway proteins. The cloning experiments demonstrated that the Lipo-Ir1 can effectively inhibit cell proliferation. In vivo experiments, Lipo-Ir1 inhibited tumor growth in xenograft nude mice, and the percentage of tumor growth inhibition in vivo was 75.70%. Overall, the liposomes Lipo-Ir1 exhibits higher anticancer activity than Ir1 under the same conditions. These results indicated that Lipo-Ir1 may be a valuable resource for cancer therapy.
Collapse
|
17
|
(η6-Arene) ruthenium(II) complexes with ferrocene-tethered salicylaldimine ligands: Synthesis, characterization and anti-cancer properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Advances in novel iridium (III) based complexes for anticancer applications: A review. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Gu Y, Wen H, Bai L, Zhou Y, Zhang H, Tian L, Zhang Y, Hao J, Liu Y. Exploring anticancer efficiency of mitochondria-targeted cyclometalated iridium(III) complexes. J Inorg Biochem 2020; 212:111215. [DOI: 10.1016/j.jinorgbio.2020.111215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
|
20
|
Synthesis, evaluation of biological activity studies of iridium(III) complexes against human gastric carcinoma SGC-7901 cells. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Liu XW, Liu NY, Deng YQ, Wang S, Liu T, Tang YC, Chen YD, Lu JL. DNA photocleavage, topoisomerase I inhibition, and cytotoxicities of two ruthenium complexes containing asymmetry ligand. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1738033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xue-Wen Liu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ning-Yi Liu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
| | - Yuan-Qing Deng
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
| | - Shan Wang
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
| | - Ting Liu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
| | - Yu-Cai Tang
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yuan-Dao Chen
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
| | - Ji-Lin Lu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Wu KJ, Ho SH, Dong JY, Fu L, Wang SP, Liu H, Wu C, Leung CH, Wang HMD, Ma DL. Aliphatic Group-Tethered Iridium Complex as a Theranostic Agent against Malignant Melanoma Metastasis. ACS APPLIED BIO MATERIALS 2020; 3:2017-2027. [DOI: 10.1021/acsabm.9b01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia-Yi Dong
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Ling Fu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuang-Peng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| |
Collapse
|
23
|
Bai L, Fei WD, Gu YY, He M, Du F, Zhang WY, Yang LL, Liu YJ. Liposomes encapsulated iridium(III) polypyridyl complexes enhance anticancer activity in vitro and in vivo. J Inorg Biochem 2020; 205:111014. [PMID: 32044395 DOI: 10.1016/j.jinorgbio.2020.111014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Three iridium(III) complexes [Ir(ppy)2(CPIP)](PF6) (Ir-1, ppy = 2-phenylpyridine, CPIP = 2-(4-chlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(ppy)2(DCPIP)](PF6) (Ir-2, DCPIP = 2-(3,4-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(ppy)2(TCPIP)](PF6) (Ir-3, TCPIP = 2,3,5-trichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The complexes Ir-1, Ir-2 and Ir-3 were encapsulated in liposomes to form Ir-1-Lipo, Ir-2-Lipo and Ir-3-Lipo. Morphology, size distribution, and zeta potential of liposomes were examined by transmission electron microscopy (TEM) and Zetasizer. The cytotoxic activity in vitro of Ir-1, Ir-2 and Ir-3 against cancer A549, HTC-116, HepG2, BEL-7402, Eca-109, B16, HeLa SGC-7901 and normal NIH3T3 cells was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. Ir-2 and Ir-3 show no cytotoxic activity against the selected cancer cells, and Ir-1 displays moderate cytotoxic effect on the cell growth in A549 cells. However, Ir-1, Ir-2 and Ir-3 were encapsulated in liposomes, the cytotoxic activity was greatly enhanced. In particular, Ir-1-Lipo and Ir-2-Lipo can effectively inhibit the cell growth in A549 cells with a low IC50 value of 3.1 ± 0.3 and 1.2 ± 0.4 μM. The apoptosis was assayed by flow cytometry. Ir-1, Ir-2 and Ir-3 reveal weak apoptotic effect, whereas Ir-1-Lipo, Ir-2-Lipo and Ir-3-Lipo induce an apoptotic percentage of 55.6%, 69.3% and 16.7% in A549 cells, respectively. Specially, in the assay of antitumor activity in vivo, the inhibiting percentage of tumor growth induced by Ir-2 is 27.65%, while inhibiting percentage of tumor growth caused by Ir-2-Lipo is 57.45%. Obviously, the liposomes can enhance anticancer activity in vitro and in vivo compared with the complexes. The results show that the iridium(III) complexes encapsulated liposomes induce apoptosis in A549 cells through ROS-mediated lysosome-mitochondria dysfunction pathway and target the microtubules.
Collapse
Affiliation(s)
- Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wei-Dong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lin-Lin Yang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou 510000, PR China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|