1
|
de Araujo Fernandes AG, Lafratta AE, Luz CP, Levy D, de Paula Faria D, Buchpiguel CA, Abram U, Deflon VM, Navarro Marques FL. [ 99mTc]Technetium and Rhenium Dithiocarbazate Complexes: Chemical Synthesis and Biological Assessment. Pharmaceutics 2025; 17:100. [PMID: 39861748 PMCID: PMC11768621 DOI: 10.3390/pharmaceutics17010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dithiocarbazates (DTCs) and their metal complexes have been studied regarding their property as anticancer activities. In this work, using S-benzyl-5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pirazol-1-carbodithionate (H2bdtc), we prepared [ReO(bdtc)(Hbdtc)] and [[99mTc]TcO(bdtc)(Hbdtc)] complexes for tumor uptake and animal biodistribution studies. METHODS Re complex was prepared by a reaction of H2bdtc and (NBu4)[ReOCl4], the final product was characterized by IR, 1H NMR, CHN, and MS-ESI. 99mTc complex was prepared by the reaction of H2bdtc and [[99mTc]TcO4- and analyzed by planar and HPLC radiochromatography, and the stability was evaluated against amino acids and plasma. Biodistribution was performed in C57B/6 mice with B16F10 and TM1M implanted tumor. RESULTS Re is asymmetric coordinated by two dithiocarbazate ligands, one with O,N,S chelation, and the other with N,S chelation; [[99mTc]TcO(bdtc)(Hbdtc)] was prepared with a radiochemical yield of around 93%. The radioactive complex is hydrophobic (LogP = 1.03), stable for 6 h in PBS and L-histidine solution; stable for 1 h in plasma, but unstable in the presence of L-cysteine. Ex vivo biodistribution demonstrated that the compound has a fast and persistent (until 2 h) uptake by the spleen (55.46%), and tumor B16F10 and TM1M uptake is lower than 1%. In vivo SPECT/CT imaging confirmed ex vivo biodistribution, except by heterogenous TM1M accumulation but not in the B16-F10 lineage. CONCLUSIONS H2bdtc proved to be an interesting chelator for rhenium or [99mTc]technetium. The right spleen uptake opened the opportunity to deepen the study of the molecule in this tissue and justifies future studies to identify the reason of heterogenous uptake in TM1M tumor uptake.
Collapse
Affiliation(s)
- André Gustavo de Araujo Fernandes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil;
- Departamento de Ciências Exatas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil
| | - Alyne Eloise Lafratta
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Carolina Portela Luz
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Debora Levy
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil;
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34-36, D-14195 Berlin, Germany;
| | - Victor Marcelo Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil;
| | - Fabio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil; (A.E.L.); (C.P.L.); (D.d.P.F.); (C.A.B.)
| |
Collapse
|
2
|
Blázquez-Tapias B, Halder S, Mendiola MA, Roy N, Sahu N, Sinha C, Jana K, López-Torres E. New Tin (IV) and Organotin (IV) Complexes with a Hybrid Thiosemicarbazone/Hydrazone Ligand: Synthesis, Crystal Structure, and Antiproliferative Activity. Bioinorg Chem Appl 2024; 2024:1018375. [PMID: 38601021 PMCID: PMC11006503 DOI: 10.1155/2024/1018375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Nowadays, the search for new chemotherapeutic agents with low toxicity and high selectivity is a major concern. In this paper, we report the synthesis and characterization of a hybrid thiosemicarbazone/hydrazone ligand in its neutral form (L1H2) and as the chloride salt ([L1H3]Cl)-, three diorganotin (IV) complexes, and one complex with Sn (IV). The compounds have been fully characterized by IR, mass spectra, 1H, 13C, and 119Sn NMR, 119Sn CP/MAS NMR, and by single crystal X-ray diffraction. The organotin compounds have the empirical formula [SnR2L1] (R = Me, Bu, and Ph), but in the solid state, they are polymeric species with seven coordination number due to weak coordination of the pyridine nitrogen, whereas in solution, the polymeric structure is lost to afford hexacoordinate monomeric species. Reaction with SnI4 yields complex [Sn (L1)2]·EtOH, with the metal in a distorted dodecahedral arrangement. We have evaluated the antiproliferative activity of the two forms of the ligands and the four coordination compounds against MDA-MB-231, HeLa, PC3, and HepG2 cancer cell lines, and WI-38 normal cell line, and all the compounds present higher activity than cisplatin, used as the standard control. To investigate the mode of action, we have selected the most active complex, containing phenyl substituents, and used the triple negative breast cancer cell line MDA-MB-231. The results show that the complex induces apoptotic cell death promoted by generation of reactive oxygen species and by disruption of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Belén Blázquez-Tapias
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, Kolkata 700 056, India
| | - M. Antonia Mendiola
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Nivedita Roy
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Nilima Sahu
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata 700 056, India
| | - Elena López-Torres
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
3
|
Jiménez-Pérez A, Fernández-Fariña S, Pedrido R, García-Tojal J. Desulfurization of thiosemicarbazones: the role of metal ions and biological implications. J Biol Inorg Chem 2024; 29:3-31. [PMID: 38148423 DOI: 10.1007/s00775-023-02037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 12/28/2023]
Abstract
Thiosemicarbazones are biologically active substances whose structural formula is formed by an azomethine, an hydrazine, and a thioamide fragments, to generate a R2C=N-NR-C(=S)-NR2 backbone. These compounds often act as ligands to generate highly stable metal-organic complexes. In certain experimental conditions, however, thiosemicarbazones undergo reactions leading to the cleavage of the chain. Sometimes, the breakage involves desulfurization processes. The present work summarizes the different chemical factors that influence the desulfurization reactions of thiosemicarbazones, such as pH, the presence of oxidant reactants or the establishment of redox processes as those electrochemically induced, the effects of the solvent, the temperature, and the electromagnetic radiation. Many of these reactions require coordination of thiosemicarbazones to metal ions, even those present in the intracellular environment. The nature of the products generated in these reactions, their detection in vivo and in vitro, together with the relevance for the biological activity of these compounds, mainly as antineoplastic agents, is discussed.
Collapse
Affiliation(s)
- Alondra Jiménez-Pérez
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Javier García-Tojal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain.
| |
Collapse
|
4
|
Kelderman CAA, Maclean RC, Hungnes IN, Davey PRWJ, Salimova E, de Veer M, Patel N, Ma MT, Paterson BM. Technetium Nitrido Complexes of Tetradentate Thiosemicarbazones: Kit-Based Radiolabeling, Characterization, and In Vivo Evaluation. Inorg Chem 2023; 62:20791-20805. [PMID: 37855107 DOI: 10.1021/acs.inorgchem.3c02650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Bis(thiosemicarbazone) and pyridylhydrazone-thiosemicarbazone chelators have demonstrated utility in nuclear medicine. In particular, the 64Cu2+ complexes have been extensively developed for hypoxia imaging and molecular imaging of peptide and protein markers of disease. However, the chemistry and application of bis(thiosemicarbazone) and pyridylhydrazone-thiosemicarbazone chelators in combination with 99mTc, the most widely used radionuclide in nuclear medicine, is underexplored. Herein, a series of bis(thiosemicarbazone) and pyridylhydrazone-thiosemicarbazone chelators were radiolabeled with nitrido-technetium-99m in an optimized one-pot synthesis from [99mTc]TcO4-. Optimization of the radiochemical syntheses allowed for production of the complexes in >90% radiochemical conversion with apparent molar activities of 3.3-5 GBq/μmol. Competition experiments demonstrated the excellent stability of the complexes. The nitrido-technetium-99 complexes were synthesized, and the chemical identities were investigated using mass spectrometry, spectroscopy, and density functional theory calculations. Complexation of nitrido-rhenium(V) was achieved with the N4-dialkylated bis(thiosemicarbazones). Planar imaging and ex vivo biodistribution studies of the five 99mTc complexes were conducted on healthy BALB/c mice to determine in vivo behavior. The lipophilic nature of the complexes resulted in uptake of 1.6-5.7% ID g-1 in the brain at 2 min postinjection and retention of 0.4-1.7% ID g-1 at 15 min postinjection. The stability of the complexes and the biodistribution data demonstrate that these chelators are ideal platforms for future production of radiopharmaceutical candidates.
Collapse
Affiliation(s)
| | - Rachel C Maclean
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Ingebjørg N Hungnes
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Patrick R W J Davey
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Natasha Patel
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Brett M Paterson
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Argibay-Otero S, Carballo R, Vázquez-López EM. Coordination Chemistry of Potentially S,N,N py-Tridentate Thiosemicarbazones with the {Re(CO) 3} + Fragment and Formation of Hemiaminal Derivatives. Inorg Chem 2023; 62:224-237. [PMID: 36546528 PMCID: PMC9832478 DOI: 10.1021/acs.inorgchem.2c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nine potentially S,N,Npy-tridentate thiosemicarbazones (HL) derived from pyridine-2-carbaldehyde or 1-(2-pyridyl)ethanone have been prepared and fully characterized. The X-ray crystal structures of six of them and two hydrochlorides were determined and analyzed. The reaction of the [ReX(CH3CN)2(CO)3]/[ReX(CO)5] (X = Cl and Br) precursors with these ligands yielded different kinds of compounds: the adducts [ReX(HL)(CO)3], in which the ligands were S,N-bidentate; the trinuclear species [Re3Cl2(L23)(HL23)(CO)9]; and the thiosemicarbazonate compounds [Re(L)(CO)3], where the ligand is S,N,Npy-tridentate. Besides, the reaction in methanol or ethanol of the thiosemicarbazones derived from aldehydes yielded S,N,Npy-tridentate hemiaminal cationic [Re(HLOR)(CO)3]X and neutral [Re(LOMe)(CO)3] complexes after the coordinated ligand underwent addition of the alcohol group to the imine bond. The reactivity of the complex [ReX(HL)(CO)3] in MeOH and NEt3 led to the formation of dinuclear [Re2(L)2(CO)6], where the thiosemicarbazonate is again S,N-bidentate. The influence that the substituents on the thiosemicarbazone ligands have on the stability of the complexes and the effect of the reaction medium on the resulting compounds have been analyzed.
Collapse
Affiliation(s)
- Saray Argibay-Otero
- Departamento
de Química Inorgánica, Facultade de Química,
Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain,Metallosupramolecular
Chemistry Group, Galicia South Health Research
Institute (IIS Galicia Sur), SERGAS-UVIGO, E-36213 Vigo, Galicia, Spain
| | - Rosa Carballo
- Departamento
de Química Inorgánica, Facultade de Química,
Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain,Metallosupramolecular
Chemistry Group, Galicia South Health Research
Institute (IIS Galicia Sur), SERGAS-UVIGO, E-36213 Vigo, Galicia, Spain
| | - Ezequiel M. Vázquez-López
- Departamento
de Química Inorgánica, Facultade de Química,
Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain,Metallosupramolecular
Chemistry Group, Galicia South Health Research
Institute (IIS Galicia Sur), SERGAS-UVIGO, E-36213 Vigo, Galicia, Spain,
| |
Collapse
|
6
|
Martínez-Estévez M, García-Fontán S, Argibay-Otero S, Prieto I, Vázquez-López EM. Synthesis, Characterization, and Cytotoxicity Studies of N-(4-Methoxybenzyl) Thiosemicarbazone Derivatives and Their Ruthenium(II)- p-cymene Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227976. [PMID: 36432074 PMCID: PMC9696800 DOI: 10.3390/molecules27227976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
The reaction of [Ru2Cl2(μ-Cl)2(η6-p-cymene)2] with two thiosemicarbazones obtained by the condensation of N-(4-methoxybenzyl) thiosemicarbazide and 1,4-hydroxy-3-methoxyphenyl)ethan-1-one (HL1) or 2-fluoro-4-hydroxybenzaldehyde (HL2) was studied. The cationic complexes of formula [RuCl(η6-p-cymene)(HL)]+ were isolated as solid chloride and trifluoromethylsulfate (TfO) salts. A study of the solid state and NMR spectra suggests the presence in the material of two isomers that differ in the configuration in the iminic bond, C2=N3, of the coordinated thiosemicarbazone in the triflate salts and only the E isomer in the chloride. An X-ray study of single crystals of the complexes supports this hypothesis. The thiosemicarbazone ligand coordinates with the ruthenium center through the iminic and sulfur atoms to form a five-membered chelate ring. Furthermore, the isolation of single crystals containing the thiosemicarbazonate complex [Ru2(μ-L2)2(η6-p-cymene)2]2+ suggests the easy labilization of the coordinated chloride in the complex. The redox behavior of the ligands and complexes was evaluated by cyclic voltammetry. It seems to be more difficult to oxidize the complex derived from HL1 than HL2. The ability of the complexes to inhibit cell growth against the NCI-H460, A549 and MDA-MB-231 lines was evaluated. The complexes did not show greater potency than cisplatin, although they did have greater efficacy, especially for the complex derived from HL1.
Collapse
Affiliation(s)
- Mónica Martínez-Estévez
- Departamento de Química Inorgánica, Campus Universitario, Universidade de Vigo, E-36310 Vigo, Spain
| | - Soledad García-Fontán
- Departamento de Química Inorgánica, Campus Universitario, Universidade de Vigo, E-36310 Vigo, Spain
- Metallosupramolecular Chemistry Group, Galicia South Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, E-36213 Vigo, Spain
- Correspondence: (S.G.-F.); (E.M.V.-L.)
| | - Saray Argibay-Otero
- Departamento de Química Inorgánica, Campus Universitario, Universidade de Vigo, E-36310 Vigo, Spain
- Metallosupramolecular Chemistry Group, Galicia South Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, E-36213 Vigo, Spain
| | - Inmaculada Prieto
- Metallosupramolecular Chemistry Group, Galicia South Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, E-36213 Vigo, Spain
- Departamento de Química Física, Campus Universitario, Universidade de Vigo, E-36310 Vigo, Spain
| | - Ezequiel M. Vázquez-López
- Departamento de Química Inorgánica, Campus Universitario, Universidade de Vigo, E-36310 Vigo, Spain
- Metallosupramolecular Chemistry Group, Galicia South Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, E-36213 Vigo, Spain
- Correspondence: (S.G.-F.); (E.M.V.-L.)
| |
Collapse
|
7
|
Kelderman CAA, Davey PRWJ, Ma MT, de Veer M, Salimova E, Donnelly PS, Paterson BM. Hexadentate technetium-99m bis(thiosemicarbazonato) complexes: synthesis, characterisation and biodistribution. Dalton Trans 2022; 51:14064-14078. [PMID: 35822662 DOI: 10.1039/d2dt01264b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The syntheses of non-oxido/non-nitrido bis(thiosemicarbazonato)technetium(V) complexes featuring a series of alkyl and ether substituents is presented. The bis(thiosemicarbazones) were radiolabelled with technetium-99m using an optimised one-pot synthesis from [99mTc][TcO4]-. Mass spectrometry and computational chemistry data suggested a distorted trigonal prismatic coordination environment for the bis(thiosemicarbazonato)technetium(V) complexes by way of a bis(thiosemicarbazone)technetium(V)-oxido intermediate complex. The lipophilicities of the complexes were estimated using distribution ratios and three of the new complexes were investigated in mice using kinetic planar imaging and ex vivo biodistribution experiments and were compared to [99mTc][TcO4]-. Modification of the technetium complexes with various lipophilic functional groups altered the biodistributions of the complexes in mice despite evidence suggesting limited stability of the complexes to biologically relevant conditions. The most hydrophilic complex had higher uptake in the kidneys compared to the most lipophilic, which had higher liver uptake, suggesting modification of the excretion pathways.
Collapse
Affiliation(s)
| | | | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brett M Paterson
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia. .,Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
González-García C, García-Pascual C, Burón R, Calatayud DG, Perles J, Antonia Mendiola M, López-Torres E. Structural variety, fluorescence and photocatalytic activity of dissymmetric thiosemicarbazone complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Parrilha GL, dos Santos RG, Beraldo H. Applications of radiocomplexes with thiosemicarbazones and bis(thiosemicarbazones) in diagnostic and therapeutic nuclear medicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Bhol M, Claude G, Jungfer MR, Abram U, Sathiyendiran M. Calix[4]arene-Analogous Technetium Supramolecules. Inorg Chem 2022; 61:5173-5177. [PMID: 35319206 DOI: 10.1021/acs.inorgchem.1c03691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calix[4]arene-analogous technetium supramolecules (1 and 2) were assembled using (NBu4)[Tc2(μ-Cl)3(CO)6] and neutral flexible bidentate nitrogen-donor ligands (L1 and L2) consisting of four arene units covalently joined via methylene units. The neutral homoleptic technetium macrocycles adopt a partial cone/cone-shaped conformation in the solid state. These supramolecules are the first example of fac-[Tc(CO)3]+ core-based metallocalix[4]arenes and second example of fac-[Tc(CO)3]+ core-based metallomacrocycles. Structurally similar fac-[Re(CO)3]+ core-based macrocycles (3 and 4) were also prepared using [Re(CO)5X] (where X = Cl or Br) and L1 or L2. The products were characterized spectroscopically and by X-ray analysis.
Collapse
Affiliation(s)
- Mamina Bhol
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Guilhem Claude
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin D-14195, Germany
| | - Maximilian Roca Jungfer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin D-14195, Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin D-14195, Germany
| | | |
Collapse
|
11
|
Argibay-Otero S, Graña AM, Carballo R, Vázquez-López EM. Synthesis of Novel Dinuclear N-Substituted 4-(Dimethylamino)benzaldehyde Thiosemicarbazonates of Rhenium(I): Formation of Four- and/or Five-Membered Chelate Rings, Conformational Analysis, and Reactivity. Inorg Chem 2020; 59:14101-14117. [PMID: 32965111 DOI: 10.1021/acs.inorgchem.0c01887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of fac-[ReX(CH3CN)2(CO)3] (X = Cl, Br) with N-phenyl-[4-(dimethylamino)benzaldehyde] thiosemicarbazone (HLA) or N-4-methoxybenzyl-[4-(dimethylamino)benzaldehyde] thiosemicarbazone (HLB) under controlled synthetic conditions gave 4 mononuclear [ReX(HL)(CO)3] (X = Cl, Br) and 16 dinuclear [Re2L2(CO)6] compounds. These complexes were obtained as single crystals, and their structures were established by X-ray diffraction. The structural study of these dimers showed the formation of several solvates, the presence of linkage isomerism, and the stabilization of four- and/or five-membered chelate rings. The different ligand coordination modes (a new μ-κ2-S,N2:κ-N3 coordination mode for a thiosemicarbazone ligand was observed), the conformation of the thiosemicarbazone chain in each case, the formal symmetry of the dimers, and the role of the synthetic procedure in the stability of the different chelate rings were analyzed and are discussed. Theoretical calculations in the gas phase were performed for the dimers with the HLA ligand in order to identify the thermodynamically most stable species. The behavior and structural stability of dimers in dimethyl sulfoxide and acetone solutions was investigated by 1H NMR spectroscopy. The strength of the ReI-L bond in solution was evidenced by the formation of [Re2(LNO2)2(CO)6] and [Re(LA)(py)(CO)3] upon reaction of the corresponding dimer with concentrated nitric acid and pyridine, respectively.
Collapse
Affiliation(s)
- Saray Argibay-Otero
- Departamento de Quı́mica Inorgánica, Facultade de Quı́mica, Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain.,Metallosupramolecular Chemistry Group, Galicia South Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, E-36213 Vigo, Galicia, Spain
| | - Ana M Graña
- Departamento de Química Física, Facultade de Química, Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain
| | - Rosa Carballo
- Departamento de Quı́mica Inorgánica, Facultade de Quı́mica, Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain.,Metallosupramolecular Chemistry Group, Galicia South Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, E-36213 Vigo, Galicia, Spain
| | - Ezequiel M Vázquez-López
- Departamento de Quı́mica Inorgánica, Facultade de Quı́mica, Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo, Campus Universitario, E-36310 Vigo, Galicia, Spain.,Metallosupramolecular Chemistry Group, Galicia South Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, E-36213 Vigo, Galicia, Spain
| |
Collapse
|
12
|
Czylkowska A, Drozd M, Biernasiuk A, Rogalewicz B, Malm A, Pitucha M. Synthesis, Spectral, Thermal and Biological Studies of 4-Cyclohexyl-3-(4-nitrophenyl)methyl-1,2,4-triazolin-5-thione and Its Copper(II) Coordination Compound, [CuCl 2(H 2O) 2L 2]. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4135. [PMID: 32957575 PMCID: PMC7560296 DOI: 10.3390/ma13184135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022]
Abstract
One of the strategies for seeking new biologically active substances is to modify compounds with potential biological activity. In this paper, 1,2,4-triazolin-5-thione derivative (3) was obtained in the cyclization reaction of appropriate thiosemicarbazide (2) as an organic ligand. The copper(II) complex, [CuCl2(H2O)2L2] (L=4-cyclohexyl-3-(nitrophenyl)methyl-1,2,4-triazolin-5-thione) (Cu-3) was prepared in a reaction of free ligand (3) with a CuCl2·2H2O solution in MeOH/EtOH mixture at room temperature. TGA data show that Cu-3 and free ligand are stable at room temperature. Both compounds were screened in vitro for antibacterial and antifungal activities using the broth microdilution method. The obtained complex (Cu-3) showed higher antibacterial effect, especially towards Gram-positive bacteria (with moderate activity and Minimal Inhibitory Concentration MIC = 250-500 µg/mL) than the free ligand (3) (with mild or no bioactivity and MIC ≥ 1000 µg/mL). In turn, yeasts, belonging to Candida albicans, exhibited similar sensitivity to both the copper(II) complex (Cu-3) and the organic ligand (3). The anticandidal activity of these compounds was moderate (MIC = 500 µg/mL), or, in the case of other Candida spp., lower (MIC ≥ 1000 µg/mL).
Collapse
Affiliation(s)
- Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Monika Drozd
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland; (M.D.); (M.P.)
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology with the Laboratory of Microbiological Diagnostics, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Bartłomiej Rogalewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Anna Malm
- Department of Pharmaceutical Microbiology with the Laboratory of Microbiological Diagnostics, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland; (M.D.); (M.P.)
| |
Collapse
|
13
|
Bakir M, Lawrence MW, Bohari Yamin M. Novel κ2-Nim,S- and κ4-C,Nim,(μ-S),(μ-S)-coordination of di-2-thienyl ketone thiosemicarbazone (dtktsc). Hydrogen evolution and catalytic properties of palladacyclic [Pd(κ4-C,Nim,(μ-S),(μ-S)-dtktsc-2H)]4. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|