1
|
Jing S, Ge Y, Pan J, Chang P, Qiao X. The independent and interactive effects of heavy metal pollution and vitamin D deficiency on early kidney injury indicators: analysis of the National Health and Nutrition Examination Survey 2001-2004. BMC Public Health 2025; 25:719. [PMID: 39984925 PMCID: PMC11844014 DOI: 10.1186/s12889-025-21796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Heavy metals (e.g., cadmium, lead, mercury, etc.) can infiltrate the human body via diverse routes, with a propensity to accumulate in the kidney cortex, thereby precipitating kidney dysfunction. Vitamin D has been implicated in mitigating the oxidative stress and inflammatory reactions triggered by heavy metal exposure. However, the interplay between heavy metal toxicity and vitamin D deficiency in the context of incipient kidney injury remains an underexplored area of research. METHODS Utilizing data from the National Health and Nutrition Examination Survey spanning from 2001 to 2004, Our methodology leveraged spline smoothing within the framework of generalized additive models to more vividly elucidate the impact of heavy metal exposure and serum vitamin D levels on the trajectory of early kidney injury biomarkers (including albumin-to-creatinine ratio, β-2 microglobulin (B2M), cystatin C (CYST), and estimated glomerular filtration rate (eGFR) (serum creatinine(SCr)-based(eGFR), CYST-based eGFR, and SCr-CYST-based eGFR). Furthermore, we conducted an interaction analysis to assess the combined effects of heavy metal exposure and vitamin D deficiency on early kidney injury. RESULTS The cohort comprised 2,422 adults. Our results indicated that cadmium levels were positively correlated with B2M, CYST, and negatively correlated with eGFRc, eGFRs. Similarly, lead levels showed a positive correlation with ACR, B2M, and CYST, and negative correlation with eGFRc, eGFRc&s. In contrast, mercury levels were negatively correlated with B2M, CYST and positively correlated with eGFRc. In addition, there was an interaction between lead exposure and vitamin D deficiency in early kidney injury indicators (P for interaction: B2M: 0.028, CYST: 0.038, eGFRc&s: 0.011). CONCLUSIONS This study suggests a correlation between exposure to cadmium and lead and an increased risk of early kidney injury. It highlights the potential importance of targeted vitamin D supplementation and reduction in lead exposure in mitigating early kidney injury. However, these findings warrant validation through further prospective research.
Collapse
Affiliation(s)
- Shuhui Jing
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yuan Ge
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Juan Pan
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Pei Chang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.
- Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
2
|
Tang X, Li L, You G, Li X, Kang J. Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review. Front Bioeng Biotechnol 2023; 11:1283771. [PMID: 38026844 PMCID: PMC10655017 DOI: 10.3389/fbioe.2023.1283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a dynamic and complex restorative process, and traditional dressings reduce their therapeutic effectiveness due to the accumulation of drugs in the cuticle. As a novel drug delivery system, microneedles (MNs) can overcome the defect and deliver drugs to the deeper layers of the skin. As the core of the microneedle system, loaded drugs exert a significant influence on the therapeutic efficacy of MNs. Metallic elements and herbal compounds have been widely used in wound treatment for their ability to accelerate the healing process. Metallic elements primarily serve as antimicrobial agents and facilitate the enhancement of cell proliferation. Whereas various herbal compounds act on different targets in the inflammatory, proliferative, and remodeling phases of wound healing. The interaction between the two drugs forms nanoparticles (NPs) and metal-organic frameworks (MOFs), reducing the toxicity of the metallic elements and increasing the therapeutic effect. This article summarizes recent trends in the development of MNs made of metallic elements and herbal compounds for wound healing, describes their advantages in wound treatment, and provides a reference for the development of future MNs.
Collapse
Affiliation(s)
- Xiao Tang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gehang You
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Destro ALF, da Silva Mattosinhos P, Novaes RD, Sarandy MM, Gonçalves RV, Freitas MB. Impact of plant extracts on hepatic redox metabolism upon lead exposure: a systematic review of preclinical in vivo evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91563-91590. [PMID: 37495800 DOI: 10.1007/s11356-023-28620-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 07/01/2023] [Indexed: 07/28/2023]
Abstract
The liver is a central target organ of heavy metals toxicity, and secondary metabolites of several plant species are suggested to attenuate lead (Pb)-induced hepatotoxicity through antioxidant and anti-inflammatory mechanisms. We used a systematic review framework to map the impact of plant extracts and bioactive secondary metabolites on immunological markers and liver redox metabolism in preclinical models of Pb exposure. This is a systematic review performed according to PRISMA guidelines. The structured research of publications was done through PubMed, Scopus, Web of Science, and Embase databases, selecting and analyzing 41 original studies included via the eligibility criteria. Evidence indicates that Pb-exposure increases reactive oxygen/nitrogen species (ROS/RNS) production by δ-aminolevulinic acid auto-oxidation, xanthine dehydrogenase, and xanthine oxidase upregulation. Pb exposure also inhibits antioxidant enzymes, potentiating ROS/NOS levels and reactive cell damage. Plant extracts rich in flavonoids, tannins, alkaloids, anthocyanins, and vitamins exerted hepatoprotective effects by chelating and decreasing Pb bioaccumulation. In addition, plant extracts reinforce exogenous and endogenous antioxidant defenses, attenuating liver oxidative stress and cell death. The lack of blinded evaluators and randomized experimental groups were the main sources of bias identified, which need to be controlled in toxicological studies aimed at identifying natural products applied to the prevention or treatment of Pb poisoning.
Collapse
Affiliation(s)
- Ana Luiza Fonseca Destro
- Department of Animal Biology, Federal University of Viçosa, Minas Gerais, Viçosa, MG, 36570-900, Brazil.
| | | | - Rômulo Dias Novaes
- Department of Structural Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | | | | | - Mariella Bontempo Freitas
- Department of Animal Biology, Federal University of Viçosa, Minas Gerais, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
4
|
Zou X, Pan L, Xu M, Wang X, Wang Q, Han Y. Probiotic potential of Lactobacillus sakei L-7 in regulating gut microbiota and metabolism. Microbiol Res 2023; 274:127438. [PMID: 37399653 DOI: 10.1016/j.micres.2023.127438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023]
Abstract
A growing body of research suggests that gut microbiota is inextricably linked to host health and disease,so we are committed to finding more probiotic resources that are beneficial to human health. This study evaluated the probiotic properties of Lactobacillus sakei L-7 isolated from home-made sausages. The basic probiotic properties of L. sakei L-7 were evaluated through in vitro tests. The strain showed 89% viability after 7 h of digestion in simulating gastric and intestinal fluid. The hydrophobicity, self-aggregation and co-aggregation of L. sakei L-7 showed it had a strong adhesion ability. C57BL/6 J mice were fed L. sakei L-7 for 4 weeks. 16 S rRNA gene analysis indicated that intake of L. sakei L-7 increased the richness of gut microbiota and abundance of beneficial bacteria Akkermansia, Allobaculum and Parabacteroides. Metabonomics analysis revealed that beneficial metabolite gamma-aminobutyric acid and docosahexaenoic acid increased significantly. While the level of metabolite sphingosine and arachidonic acid significantly decreased. In addition, serum levels of inflammatory cytokines interleukin (IL)- 6 and tumor necrosis factor (TNF)-α were significantly decreased. The results suggested that L. sakei L-7 may promote gut health and reduce the occurrence of inflammatory response, it has the potential to become a probiotic.
Collapse
Affiliation(s)
- Xuan Zou
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Xiaoqing Wang
- Graduate School, Tianjin Medical University, Tianjin 300070, the People's Republic of China
| | - Qi Wang
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China.
| |
Collapse
|
5
|
Almalki DA. Hepatorenal Protective Effect of Fenugreek Aqueous Extract against Lead Toxicity in Experimental Rats. DOKL BIOCHEM BIOPHYS 2022; 507:318-325. [PMID: 36786994 DOI: 10.1134/s1607672922340014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 02/15/2023]
Abstract
In this study, aqueous extract of germinated fenugreek seeds was investigated to assess its therapeutic effect on hepatorenal lead toxicity in experimental rats. After overnight fasting, rats were injected intraperitoneally with 0.5 mL of lead acetate at a dose of 35 mg/kg body weight for five consecutive days. Animals were divided into four groups of ten rats each: normal control; untreated negative control and rats treated with 200 or 400 mg/kg body weight of the aqueous extract. Treatments were performed by intraperitoneal injection of 1mL of the extract once a day for 28 consecutive days. Results showed significant differences between treated and control groups during the whole period of the experiment. This was demonstrated by improving body weight and level of serum total protein, decreasing levels of serum ALT, AST, total bilirubin, blood urea nitrogen, and creatinine. As well, histological analysis revealed a marked reduction in inflammation and structural alterations of liver and kidney organs of fenugreek-treated rats. This hepatoprotective effect can be attributed to the anti-inflammatory, anti-oxidant and regenerative capacity of the high content of the phytochemical constituents in the extract.
Collapse
Affiliation(s)
- D A Almalki
- Biology Department, Faculty of Science and Arts in Qilwah, Albaha University, Qilwah, Saudi Arabia.
| |
Collapse
|
6
|
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, Bustabad A, Shaw M, Robins J, Vera Gomez K, Suphakorn T, Camacho Gemelgo M, Law A, Lin K, Hospedales E, Haley H, Perez Martinez JP, Khan S, DeCanio J, Padgett M, Abramov A, Nanjundan M. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals (Basel) 2022; 15:1380. [PMID: 36355554 PMCID: PMC9698530 DOI: 10.3390/ph15111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/22/2023] Open
Abstract
One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
7
|
Chen X, Shuai D, Han Y, Luo D, Wang L, Chen B. Polyoxometalates as Potential Next‐Generation Metallodrugs in the melanogenesis inhibitor. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | - Li Wang
- Jimei University fisheries college Yindou Road 43 Jimei, Xiamen 361021 Xiamen CHINA
| | | |
Collapse
|
8
|
Liu HS, Zhou MY, Zhang X, Li YL, Kong JW, Gao X, Ge DY, Liu JJ, Ma PG, Peng GY, Liao Y. Sagittaria sagittifolia polysaccharide protects against six-heavy-metal-induced hepatic injury associated with the activation of Nrf2 pathway to regulate oxidative stress and apoptosis. J Inorg Biochem 2022; 232:111810. [DOI: 10.1016/j.jinorgbio.2022.111810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
|
9
|
Gao Q, Wang P, Niu T, He D, Wang M, Yang H, Zhao X. Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging. Food Chem 2022; 370:131013. [PMID: 34509150 DOI: 10.1016/j.foodchem.2021.131013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/08/2021] [Accepted: 08/29/2021] [Indexed: 11/04/2022]
Abstract
Malus micromalus Makino has great commercial and nutritional value. The regression and classification models were investigated by using near-infrared hyperspectral imaging (NIR-HSI) combined with chemometrics to improve the efficiency of non-destructive detection. The successive projections algorithm (SPA), interval random frog, and competitive adaptive reweighted sampling were employed to extract effective wavelengths sensitive to changes of soluble solid content (SSC) and firmness index (FI) information. Two types of assessment models based on full spectrum and effective wavelengths, namely partial least squares regression and extreme learning machine, were established to predict SSC and FI. In addition, the classification models based on the support vector machine improved by the grey wolf optimizer (GWO-SVM) and partial least squares discrimination analysis were constructed to differentiate maturity stage. The SPA-ELM and SPA-GWO-SVM models achieved satisfactory performance. The results illustrate that NIR-HSI is feasible for evaluation of the quality of Malus micromalus Makino.
Collapse
Affiliation(s)
- Qiang Gao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Peng Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Tong Niu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Dongjian He
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, 712100, Shaanxi, China.
| | - Meili Wang
- College of Information Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Huijun Yang
- College of Information Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaoqiang Zhao
- School of Communication and Information, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi, China.
| |
Collapse
|
10
|
Ding Y, Li X, Liu Y, Wang S, Cheng D. Protection Mechanisms Underlying Oral Administration of Chlorogenic Acid against Cadmium-Induced Hepatorenal Injury Related to Regulating Intestinal Flora Balance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1675-1683. [PMID: 33494608 DOI: 10.1021/acs.jafc.0c06698] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a heavy metal, which is widely used in the industry and daily life. It has a long half-life, so large amounts of Cd can accumulate in humans and become toxic. Chlorogenic acid (CGA) can eliminate free radicals and inhibit lipid peroxidation and is mainly used to prevent metal toxicity. In the present study, mice are given CGA by intraperitoneal injection or gavage, respectively, to explore the mechanism of preventing Cd toxicity. In acute Cd-exposed mice, CGA treatment (ip) alleviated Cd-induced oxidative damage and reduced the production of NO and MPO in the liver and kidney tissues, while TLR4 expression levels did not change significantly. After 8 weeks of Cd exposure, CGA administration (gavage) significantly alleviated gut dysbiosis by decreasing the Firmicutes to Bacteroidetes ratio, enhancing the relative abundances of bacteria, including Ruminiclostridium_9, Alloprevotella, and Rikenella, and inhibiting the activation of the TLR4/MyD88/NF-κB signaling pathway. These findings suggested that protection mechanisms underlying the oral administration of CGA against the Cd-induced hepatorenal injury was related to the regulation of the intestinal flora balance. CGA can be used as an effective component in daily diet to prevent Cd toxicity.
Collapse
Affiliation(s)
- Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yutong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Sharda D, Attri K, Kaur P, Choudhury D. Protection of lead-induced cytotoxicity using paramagnetic nickel–insulin quantum clusters. RSC Adv 2021; 11:24656-24668. [PMID: 35481039 PMCID: PMC9036906 DOI: 10.1039/d1ra03597e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Pb-toxicity is associated with inflammation which leads to delay in wound healing. Pb2+ utilizes calcium ion channels to enter the cell. Therefore, to achieve effective healing in a Pb-poisoned system, capturing Pb2+ from the circulatory system would be an effective approach without hampering the activity of the calcium ion channel. In this work insulin–nickel fluorescent quantum clusters (INiQCs) have been synthesized and used for the specific detection of Pb2+ ions in vitro and in cell-free systems. INiQCs (0.09 μM) can detect Pb2+ concentrations as low as 10 pM effectively in a cell-free system using the fluorescence turn-off method. In vitro INiQCs (0.45 μM) can detect Pb2+ concentrations as low as 1 μM. INiQCs also promote wound healing which can easily be monitored using the bright fluorescence of INiQCs. INiQCs also help to overcome the wound recovery inhibitory effect of Pb2+in vitro using lead nitrate. This work helps to generate effective biocompatible therapeutics for wound recovery in Pb2+ poisoned individuals. Receptor targeted ferromagnetic Insulin–Nickel Quantum fluorescence Clusters (INiQCs) can specifically detect Pb2+ and prevents Pb2+ poisoning.![]()
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala
- India
| | - Komal Attri
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala
- India
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Center of Excellence in Emerging Materials
| | - Pawandeep Kaur
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala
- India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala
- India
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Center of Excellence in Emerging Materials
| |
Collapse
|