1
|
Srishti K, Negi O, Hota PK. Recent Development on Copper-Sensor and its Biological Applications: A Review. J Fluoresc 2025; 35:1273-1313. [PMID: 38416283 DOI: 10.1007/s10895-024-03587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/29/2024]
Abstract
Metal ion recognition is one of the most prospective research topics in the field of chemical sensors due to its wide range of clinical, biological and environmental applications. In this context, hydrazones are well known compounds that exhibit metal sensing and several biological properties due to the presence of N=CH- bond. Some of the biological properties includes anti-cancer, anti-tumor, anti-oxidant, anti-microbial activities. Hydrazones are also used as a ligand to detect metal ion as well as to generate metal complexes that exhibit medicinal properties. Thus, in recent years, many attempts were made to develop novel ligands with enhanced metal sensing and medicinal properties. In this review, some of the recent development on the hydrazones and their copper complexes are covered from the last few years from 2015-2023. These includes significance of copper ions, synthesis, biological properties, mechanism and metal sensing properties of some of the copper complexes were discussed.
Collapse
Affiliation(s)
- Km Srishti
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Oseen Negi
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Prasanta Kumar Hota
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
2
|
Mandal A, Rai R, Mandal AA, Dhar P, Banerjee S. Vitamin B 6 Appended Polypyridyl Co(III) Complexes for Photo-Triggered Antibacterial Activity. Chem Asian J 2024; 19:e202400943. [PMID: 39258323 DOI: 10.1002/asia.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Three novel polypyridyl-Co(III)-vitamin B6 complexes viz., [Co(CF3-phtpy)(SBVB6)]Cl (Co1), [Co(anthracene-tpy)(SBVB6)]Cl (Co2), [Co(NMe2-phtpy)(SBVB6)]Cl (Co3), where 4'-(4-(trifluoromethyl)phenyl)-2,2':6',2''-terpyridine=CF3-phtpy, 4'-(anthracen-9-yl)-2,2':6',2''-terpyridine=anthracene-tpy;, 4-([2,2':6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline=NMe2-phtpy, (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol=H2SBVB6 were successfully developed for aPDT (antibacterial photodynamic therapy) applications. Co1-Co3 exhibited an intense absorption band at ca. 435-485 nm, which is attributed to ligand-to-metal charge transfer and was beneficial for antibacterial photodynamic therapy. The distorted octahedral geometry of the complexes with CoIIIN4O2 core was evident from the DFT study. The visible light absorption ability and good photo-stability of Co1-Co3 made them good photosensitizers for aPDT. Co1-Co3 displayed significant antibacterial responses against gram-positive (S. aureus) and gram-negative (E. coli) bacteria upon light exposure (10 J cm-2 , 400-700 nm) and showed MIC values between 0.01-0.005 μg mL-1. The aPDT activities of these complexes were due to their ability to damage bacterial cell membranes via ROS generation. Overall, this study shows the photo-triggered ROS-mediated bacteria-killing potential of Co(III) complexes.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
3
|
Abreu K, Viana JR, Oliveira Neto JG, Dias TG, Reis AS, Lage MR, da Silva LM, de Sousa FF, dos Santos AO. Exploring Thermal Stability, Vibrational Properties, and Biological Assessments of Dichloro(l-histidine)copper(II): A Combined Theoretical and Experimental Study. ACS OMEGA 2024; 9:43488-43502. [PMID: 39493995 PMCID: PMC11525524 DOI: 10.1021/acsomega.4c05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Dichloro(l-histidine)copper(II) crystal ([Cu(l-His)Cl2] complex) was obtained by the slow evaporation method and characterized concerning its thermal stability, phase transformations, and electronic and vibrational properties. X-ray diffraction (XRPD) confirmed that this complex crystallizes with an orthorhombic structure (P212121 space group). Thermal analyses (TG and DTA) demonstrate stability from ambient temperature up to 460 K, followed by a phase transition from the orthorhombic structure to the amorphous form around 465 K, as confirmed by temperature-dependent XRPD studies. The active modes in Fourier transform infrared (FT-IR) and Raman spectroscopy spectra were suitably assigned via density functional theory (DFT) calculations. Additionally, Hirshfeld surface analysis uncovered the prominence of Cl···H, O···H, and H···H interactions as the primary intermolecular forces within the crystal structure. The antimicrobial activity of the [Cu(l-His)Cl2] complex was investigated, demonstrating significant efficacy against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Pseudomonas aeruginosa), and fungi (Candida albicans). The minimum inhibitory concentration and cell viability tests showed that the complex inhibits the growth of S. aureus bacteria at a concentration of 1.5 μM without causing damage to the human cell line. The pharmacokinetic parameters corroborate the other tested parameters and highlight the [Cu(l-His)Cl2] complex as a promising alternative for future clinical trials and medicinal applications. The alignment of the pharmacokinetic parameters with other tested criteria highlights the potential of the [Cu(l-His)Cl2] complex as a promising candidate for future clinical studies.
Collapse
Affiliation(s)
- Kamila
R. Abreu
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Jailton R. Viana
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - João G. Oliveira Neto
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Tatielle G. Dias
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Aramys S. Reis
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Mateus R. Lage
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Luzeli M. da Silva
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Francisco F. de Sousa
- Institute
of Exact and Natural Sciences, Federal University
of Para (UFPA), 66075-110 Belem, PA, Brazil
| | - Adenilson O. dos Santos
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| |
Collapse
|
4
|
Savić M, Pevec A, Stevanović N, Novaković I, Matić IZ, Petrović N, Stanojković T, Milčić K, Zlatar M, Turel I, Čobeljić B, Milčić M, Gruden M. Synergy of experimental and computational chemistry: structure and biological activity of Zn(II) hydrazone complexes. Dalton Trans 2024; 53:13436-13453. [PMID: 39058304 DOI: 10.1039/d4dt01353k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this paper, three different Zn(II) complexes with (E)-2-(2-(1-(6-bromopyridin-2-yl)ethylidene)hydrazinyl)-N,N,N-trimethyl-2-oxoethan-1-aminium chloride (HLCl) have been synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR and NMR spectroscopy. All complexes are mononuclear, with the ligand (L) coordinated in a deprotonated formally neutral zwitterionic form via NNO donor set atoms. Complex 1 forms an octahedral geometry with the composition [ZnL2](BF4)2, while complexes 2 [ZnL(NCO)2] and 3 [ZnL(N3)2] form penta-coordinated geometry. Density functional theory (DFT) calculations were performed to enhance our understanding of the structures of the synthesized complexes and the cytotoxic activity of the complexes was tested against five human cancer cell lines (HeLa, A549, MDA-MB-231, K562, LS 174T) and normal human fibroblasts MRC-5. Additionally, antibacterial and antifungal activity of these complexes was tested against a panel of Gram-negative and Gram-positive bacteria, two fungal strains, and a yeast strain. It is noteworthy that all three complexes show selective antifungal activity comparable to that of amphotericin B. Molecular docking analysis predicted that geranylgeranyl pyrophosphate synthase, an enzyme essential for sterol biosynthesis, is the most likely target for inhibition by the tested complexes.
Collapse
Affiliation(s)
- Milica Savić
- University of Belgrade - Institute of chemistry, technology and metallurgy Department of chemistry, Njegoševa 12, P.O. Box 815, 11001 Belgrade, Serbia
| | - Andrej Pevec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Nevena Stevanović
- University of Belgrade - Faculty of Chemistry Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Irena Novaković
- University of Belgrade - Institute of chemistry, technology and metallurgy Department of chemistry, Njegoševa 12, P.O. Box 815, 11001 Belgrade, Serbia
| | - Ivana Z Matić
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Nina Petrović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
- "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Tatjana Stanojković
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Karla Milčić
- University of Belgrade - Faculty of Chemistry Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Matija Zlatar
- University of Belgrade - Institute of chemistry, technology and metallurgy Department of chemistry, Njegoševa 12, P.O. Box 815, 11001 Belgrade, Serbia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Božidar Čobeljić
- University of Belgrade - Faculty of Chemistry Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Miloš Milčić
- University of Belgrade - Faculty of Chemistry Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Maja Gruden
- University of Belgrade - Faculty of Chemistry Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
5
|
Hassan SS, Aly SA, Al-Sulami AI, Albohy SAH, Salem MF, Nasr GM, Abdalla EM. Synthesis, characterization, PXRD studies, and theoretical calculation of the effect of gamma irradiation and antimicrobial studies on novel Pd(II), Cu(II), and Cu(I) complexes. Front Chem 2024; 12:1357330. [PMID: 38410818 PMCID: PMC10894937 DOI: 10.3389/fchem.2024.1357330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
The main objective of this study is to synthesize and characterize of a new three complexes of Pd (II), Cu (II), and Cu (I) metal ions with novel ligand ((Z)-2-(phenylamino)-N'-(thiophen-2-ylmethylene)acetohydrazide) H2LB. The structural composition of new compounds was assessed using several analytical techniques including FT-IR, 1H-NMR, electronic spectra, powder X-ray diffraction, and thermal behavior analysis. The Gaussian09 program employed the Density Functional Theory (DFT) approach to optimize the geometry of all synthesized compounds, therefore obtaining the most favorable structures and crucial parameters. An investigation was conducted to examine the impact of γ-irradiation on ligands and complexes. Before and after γ-irradiation, the antimicrobial efficiency was investigated for the activity of ligands and their chelates. The Cu(I) complex demonstrated enhanced antibacterial activity after irradiation, as well as other standard medications such as ampicillin and gentamicin. Similarly, the Cu(I) complex exhibited superior activity against antifungal species relative to the standard drug Nystatin. The docking investigation utilized the target location of the topoisomerase enzyme (2xct) chain A.
Collapse
Affiliation(s)
- Safaa S. Hassan
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Samar A. Aly
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ahlam I. Al-Sulami
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Salwa A. H. Albohy
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr, Cairo, Egypt
| | - Mohamed F. Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ghada M. Nasr
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ehab M. Abdalla
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga, Egypt
| |
Collapse
|
6
|
Li H, Wang X, Yuan K, Lv L, Liu K, Li Z. Fluorescent Mechanism of a Highly Selective Probe for Copper(II) Detection: A Theoretical Study. ACS OMEGA 2023; 8:17171-17180. [PMID: 37214676 PMCID: PMC10193560 DOI: 10.1021/acsomega.3c01528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
A highly selective probe for copper(II) detection based on the dansyl group was theoretically studied by means of (time-dependent) density functional theory. The calculated results indicated that the oscillator strength of the fluorescent process for the probe molecule is considerably large, but the counterpart of its copper(II) complex is nearly zero; therefore, the predicted radiative rate kr of the probe is several orders of magnitude larger than that of its complex; however, the predicted internal conversion rate kic of both the probe and its complex is of the same order of magnitude. In addition, the simulated intersystem crossing rate kisc of the complex is much greater than that of the probe due to the effect of heavy atom from the copper atom in the complex. Based on the above information, the calculated fluorescence quantum yield of the probe is 0.16% and that of the complex becomes 10-6%, which implies that the first excited state of the probe is bright state and that of the complex is dark state. For the complex, the hole-electron pair analysis indicates that the process of S0 → S1 belongs to metal-to-ligand charge transfer; its density-of-state diagram visually illustrates that the highest occupied molecular orbital (HOMO) contains the ingredient of the s orbital from the copper atom, which decreases the frontier orbital energy level and the overlap integral of HOMO and LUMO.
Collapse
|
7
|
Pinheiro AC, Nunes IJ, Ferreira WV, Tomasini PP, Trindade C, Martins CC, Wilhelm EA, Oliboni RDS, Netz PA, Stieler R, Casagrande ODL, Saffi J. Antioxidant and Anticancer Potential of the New Cu(II) Complexes Bearing Imine-Phenolate Ligands with Pendant Amine N-Donor Groups. Pharmaceutics 2023; 15:pharmaceutics15020376. [PMID: 36839698 PMCID: PMC9960331 DOI: 10.3390/pharmaceutics15020376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Cu(II) complexes bearing NNO-donor Schiff base ligands (2a, b) have been synthesized and characterized. The single crystal X-ray analysis of the 2a complex revealed that a mononuclear and a dinuclear complex co-crystallize in the solid state. The electronic structures of the complexes are optimized by Density Functional Theory (DFT) calculations. The monomeric nature of 2a and 2b species is maintained in solution. Antioxidant activities of the ligands (1a, b) and Cu(II) complexes (2a, b) were determined by in vitro assays such as 1,1-diphenyl-2-picrylhydrazyl free radicals (DPPH.) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals (ABTS+). Our results demonstrated that 2a showed better antioxidant activity. MTT assays were performed to assess the toxicity of ligands and Cu(II) complexes in V79 cells. The antiproliferative activity of compounds was tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and SW620 (colorectal carcinoma) and on MRC-5 (normal lung fibroblast). All compounds showed high cytotoxicity in the all-cell lines but showed no selectivity for tumor cell lines. Antiproliferative activity by clonogenic assay 2b showed a more significant inhibitory effect on the MCF-7 cell lines than on MRC-5. DNA damage for the 2b compound at 10 µM concentration was about three times higher in MCF-7 cells than in MRC-5 cells.
Collapse
Affiliation(s)
- Adriana Castro Pinheiro
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Ianka Jacondino Nunes
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Wesley Vieira Ferreira
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Cristiano Trindade
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Carolina Cristóvão Martins
- Laboratory in Biochemical Pharmacology, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratory in Biochemical Pharmacology, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Robson da Silva Oliboni
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Paulo Augusto Netz
- Grupo de Química Teórica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Rafael Stieler
- Laboratory of Molecular Catalysis, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Osvaldo de Lazaro Casagrande
- Laboratory of Molecular Catalysis, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Correspondence:
| |
Collapse
|
8
|
Pereira WA, Nascimento ÉCM, Martins JBL. Electronic and structural study of T315I mutated form in DFG-out conformation of BCR-ABL inhibitors. J Biomol Struct Dyn 2022; 40:9774-9788. [PMID: 34121617 DOI: 10.1080/07391102.2021.1935320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, the four main drugs for the treatment of chronic myeloid leukemia were analyzed, being imatinib, dasatinib, nilotinib and ponatinib followed by four derivative molecules of nilotinib and ponatinib. For these derivative molecules, the fluorine atoms were replaced by hydrogen and chlorine atoms in order to shade light to the structural effects on this set of inhibitors. Electronic studies were performed at density functional theory level with the B3LYP functional and 6-311+G(d,p) basis set. The frontier molecular orbitals, gap HOMO-LUMO, and NBO were analyzed and compared to docking studies for mutant T315I tyrosine kinase protein structure code 3IK3, in the DFG-out conformation. Structural similarities were pointed out, such as the presence of groups common to all inhibitors and modifications raised up on new generations of imatinib-based inhibitors. One of them is the trifluoromethyl group present in nilotinib and later included in ponatinib, in addition to the 1-methylpiperazin-1-ium group that is present in imatinib and ponatinib. The frontier molecular orbitals of imatinib and ponatinib are contributing to the same amino acid residues, and the ineffectiveness of imatinib against the T315I mutation was discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Washington A Pereira
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - Érica C M Nascimento
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - João B L Martins
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
9
|
Elganzory HH, Hassan SS, Aly SA, Abdalla EM. Synthesis, Characterization, PXRD Studies, Theoretical Calculation, and Antitumor Potency Studies of a Novel N,O-Multidentate Chelating Ligand and Its Zr(IV), V(IV), Ru(III), and Cd(II) Complexes. Bioinorg Chem Appl 2022; 2022:2006451. [PMID: 38435083 PMCID: PMC10908574 DOI: 10.1155/2022/2006451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 03/05/2024] Open
Abstract
A new series of Zr(IV), V(IV), Ru(III), and Cd(II) complexes with the ligand N-((5-hydroxy-4-oxo-4H-pyran-3-yl)methylene)-2-(p-tolylamino)acetohydrazide (H2L) have been prepared. FT-IR, 1H-NMR, electronic spectra, powder X-ray, and thermal behavior methods were applied to elucidate the structural composition of new compounds. Geometry optimization for all synthesized compounds was conducted using the Gaussian09 program via the DFT method, to obtain optimal structures and essential parameters. Moreover, the antibacterial and antitumor activity of the ligand and its complexes were studied, where the Cd(II) complex acquires probably the best antibacterial activity followed by the Ru(III) complex towards bacterial species than others when using ampicillin and gentamicin were used as standard drugs. The complexes exhibited interestingly antitumor potential against the MCF-7 breast cancer cell line. The cytotoxicity of the new complexes has been arranged to follow the order: Ru(III) complex > Cd(II) complex > Zr(IV) complex > V(IV) complex > ligand. Molecular docking was performed on the active site of ribosyltransferase and obtained good results. Structure-based molecular docking is used to identify a potential therapeutic inhibitor for NUDT5.
Collapse
Affiliation(s)
- Hussein H. Elganzory
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Safaa S. Hassan
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Samar A. Aly
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat 32958, Egypt
| | - Ehab M. Abdalla
- Chemistry Department, Faculty of Science, New Valley University, Alkharga 72511, Egypt
| |
Collapse
|
10
|
Mechanism of vitamin B6 benzoyl hydrazone platinum(II) complexes overcomes multidrug resistance in lung cancer. Eur J Med Chem 2022; 237:114415. [DOI: 10.1016/j.ejmech.2022.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
|
11
|
Gur'eva YA, Zalevskaya OA, Shevchenko OG, Slepukhin PA, Makarov VA, Kuchin AV. Copper(ii) complexes with terpene derivatives of ethylenediamine: synthesis, and antibacterial, antifungal and antioxidant activity. RSC Adv 2022; 12:8841-8851. [PMID: 35424859 PMCID: PMC8985105 DOI: 10.1039/d2ra00223j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of new chiral copper(ii) complexes with terpene derivatives of ethylenediamine and the results of studying their antibacterial, antifungal and antioxidant activity in vitro are discussed. All studied copper complexes (1-4) showed significantly higher antifungal activity against the strains of C. albicans, S. salmonicolor and P. notatum compared to the activity of the clinical antifungal drug amphotericin. High antibacterial activity of copper complexes with terpene derivatives of ethylenediamine was revealed against the S. aureus (MRSA) strain, which is resistant to the reference antibiotic ciprofloxacin. Using various test systems, a comparative assessment of the antioxidant activity (AOA) of the synthesized copper complexes and the ligands was carried out. The salen-type complex 4, which has the highest AOA in the model of initiated oxidation of a substrate containing animal lipids, was superior to other copper complexes in the ability to protect erythrocytes under conditions of H2O2-induced hemolysis.
Collapse
Affiliation(s)
- Yana A Gur'eva
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 48, Pervomayskaya St. Syktyvkar 167000 Komi Republic Russian Federation
| | - Olga A Zalevskaya
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 48, Pervomayskaya St. Syktyvkar 167000 Komi Republic Russian Federation
| | - Oksana G Shevchenko
- Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 28, Kommunisticheskaya St. Syktyvkar 167982 Komi Republic Russian Federation
| | - Pavel A Slepukhin
- I.Ya. Postovskii Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences 22/20, S. Kovalevskoy St. Ekaterinburg 620108 Russian Federation
| | - Vadim A Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences 33-2, Leninsky Prospekt Moscow 119071 Russian Federation
| | - Aleksandr V Kuchin
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences 48, Pervomayskaya St. Syktyvkar 167000 Komi Republic Russian Federation
| |
Collapse
|
12
|
Stevanovic N, Jevtovic M, Mitic D, Matic I, Djordjic-Crnogorac M, Vujcic M, Sladic D, Cobeljic B, Andjelkovic K. Evaluation of antitumor potential of Cu(II) complex with hydrazone of 2-acetylthiazole and Girard’s t reagent. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc211203114s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this paper, the previously synthesized Cu(II) complex ([CuL1(N3)
(CH3OH)]BF4) with N,N,N-trimethyl-2-oxo-2-(2-(1-(thiazol-2-yl)ethylidene)-
hydrazinyl)ethan-1-aminium chloride, has been characterized and its
biological activity has been studied in detail. The Cu(II) complex consists
of ligand coordinated in a deprotonated, formally neutral zwitter-ionic
form, via NNO atoms, one azido ligand and one methanol molecule. The Cu(II)
complex was selected due to results of the cytotoxic activity, the brine
shrimp test and DPPH radical scavenging activity, which were previously
performed. The effects of Cu(II) complex on cell cycle phase distribution of
cervical adenocarcinoma HeLa cells were investigated in order to examine
the mechanisms of its anticancer activity. The measurement of intracellular
ROS levels in HeLa and HaCaT cell lines were evaluated in order to explore
their possible generation and the role in cytotoxic activity. The possible
anti-invasive and anti-angiogenic properties of Cu(II) complex were
evaluated. DNA binding experiments, including fluorescence displacement
study and DNA cleavage experiments, were performed in order to obtain
information on the type of DNA-metal complex interactions.
Collapse
Affiliation(s)
| | - Mima Jevtovic
- Innovative centre of the Faculty of Chemistry, Belgrade, Serbia
| | - Dragana Mitic
- Innovative centre of the Faculty of Chemistry, Belgrade, Serbia
| | - Ivana Matic
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Miroslava Vujcic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Belgrade, Serbia
| | - Dusan Sladic
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | | | | |
Collapse
|
13
|
Zalevskaya OA, Gur’eva YA. Recent Studies on the Antimicrobial Activity of Copper Complexes. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Santiago PHDO, Duarte EDA, Nascimento ÉCM, Martins JBL, Castro MS, Gatto CC. A binuclear copper(II) complex based on hydrazone ligand: Characterization, molecular docking, and theoretical and antimicrobial investigation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pedro H. de O. Santiago
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB), Campus Universitário Darcy Ribeiro Brasília Brazil
| | - Eduardo de A. Duarte
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB), Campus Universitário Darcy Ribeiro Brasília Brazil
| | - Érica C. M. Nascimento
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB), Campus Universitário Darcy Ribeiro Brasília Brazil
| | - João B. L. Martins
- Laboratory of Computational Chemistry University of Brasilia (IQ‐UnB), Campus Universitário Darcy Ribeiro Brasília Brazil
| | - Mariana S. Castro
- Laboratory of Toxinology, Institute of Biology University of Brasília, Campus Universitário Darcy Ribeiro Brasília Brazil
| | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography University of Brasilia (IQ‐UnB), Campus Universitário Darcy Ribeiro Brasília Brazil
| |
Collapse
|
15
|
Singh G, Gamboa S, Orio M, Pantazis DA, Roemelt M. Magnetic exchange coupling in Cu dimers studied with modern multireference methods and broken-symmetry coupled cluster theory. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02830-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractSpin-state energetics of exchange-coupled copper complexes pose a persistent challenge for applied quantum chemistry. Here, we provide a comprehensive comparison of all available theoretical approaches to the problem of exchange coupling in two antiferromagnetically coupled bis-μ-hydroxo Cu(II) dimers. The evaluated methods include multireference methods based on the density matrix renormalization group (DMRG), multireference methods that incorporate dynamic electron correlation either perturbatively, such as the N-electron valence state perturbation theory, or variationally, such as the difference-dedicated configuration interaction. In addition, we contrast the multireference results with those obtained using broken-symmetry approaches that utilize either density functional theory or, as demonstrated here for the first time in such systems, a local implementation of coupled cluster theory. The results show that the spin-state energetics of these copper dimers are dominated by dynamic electron correlation and represent an impossible challenge for multireference methods that rely on brute-force expansion of the active space to recover correlation energy. Therefore, DMRG-based methods even at the limit of their applicability cannot describe quantitatively the antiferromagnetic exchange coupling in these dimers, in contrast to dinuclear complexes of earlier transition metal ions. The convergence of the broken-symmetry coupled cluster approach is studied and shown to be a limiting factor for the practical application of the method. The advantages and disadvantages of all approaches are discussed, and recommendations are made for future developments.
Collapse
|
16
|
Souza RAC, Costa WRP, de F Faria E, Bessa MADS, Menezes RD, Martins CHG, Maia PIS, Deflon VM, Oliveira CG. Copper(II) complexes based on thiosemicarbazone ligand: Preparation, crystal structure, Hirshfeld surface, energy framework, antiMycobacterium activity, in silico and molecular docking studies. J Inorg Biochem 2021; 223:111543. [PMID: 34298306 DOI: 10.1016/j.jinorgbio.2021.111543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 01/07/2023]
Abstract
Considering the promising previous results on the remarkable activity exhibited by cobalt(III) and manganese(II) thiosemicarbazone compounds as antibacterial agents, the present study aimed to prepare and then evaluate the antibacterial activity of two different types of Cu(II) complexes based on a 2-acetylpyridine-N(4)-methyl-thiosemicarbazone ligand (Hatc-Me), a monomer complex [CuCl(atc-Me)] and a novel dinuclear complex [{Cu(μ-atc-Me)}2μ-SO4]. The compounds were characterized by infrared spectra, ultraviolet visible and CHN elemental analysis. In addition, the crystalline structures of the complexes were determined by single-crystal X-ray diffraction. In both cases, the Schiff base ligand coordinated in a tridentate mode via the pyridine nitrogen, imine nitrogen and sulfur atoms. The two Cu(II) atoms in the dimer are five coordinate, consisting of three NNS-donor atoms from the thiosemicarbazone ligand connected by a sulfate bridge. The Hirshfeld surface and energy framework of the complexes were additionally analyzed to verify the intermolecular interactions. The biological activity of the Cu(II) salts, the free ligand and its Cu(II) complexes was evaluated against six strains of mycobacteria including Mycobacterium tuberculosis. The complexes showed promising results as antibacterial agents for M. avium and M. tuberculosis, which ranged from 6.12 to 12.73 μM. Furthermore, molecular docking analysis was performed and the binding energy of the docked compound [{Cu(μ-atc-Me)}2μ-SO4] with M. tuberculosis and M. avium strains were extremely favorable (-11.11 and - 14.03 kcal/mol, respectively). The in silico results show that the complexes are potential candidates for the development of new antimycobacterial drugs.
Collapse
Affiliation(s)
- Rafael A C Souza
- Institute of Chemistry, Federal University of Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Waleska R P Costa
- Institute of Chemistry, Federal University of Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Eduardo de F Faria
- Institute of Chemistry, Federal University of Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Meliza A de S Bessa
- Institute of Biomedical Sciences, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
| | - Ralciane deP Menezes
- Institute of Biomedical Sciences, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
| | - Carlos H G Martins
- Institute of Biomedical Sciences, Federal University of Uberlândia, 38408-100 Uberlândia, MG, Brazil
| | - Pedro I S Maia
- Departament of Chemistry, Federal University of the Triângulo Mineiro, 38025-440 Uberaba, MG, Brazil
| | - Victor M Deflon
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Carolina G Oliveira
- Institute of Chemistry, Federal University of Uberlândia, 38400-902 Uberlândia, MG, Brazil.
| |
Collapse
|
17
|
de Souza
Farias SA, da Costa KS, Martins JB. Analysis of Conformational, Structural, Magnetic, and Electronic Properties Related to Antioxidant Activity: Revisiting Flavan, Anthocyanidin, Flavanone, Flavonol, Isoflavone, Flavone, and Flavan-3-ol. ACS OMEGA 2021; 6:8908-8918. [PMID: 33842761 PMCID: PMC8028018 DOI: 10.1021/acsomega.0c06156] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 06/03/2023]
Abstract
Understanding the antioxidant activity of flavonoids is important to investigate their biological activities as well as to design novel molecules with low toxicity and high activity. Aromaticity is a chemical property found in cyclic structures that plays an important role in their stability and reactivity, and its investigation can help us to understand the antioxidant activity of some heterocyclic compounds. In the present study, we applied the density functional theory (DFT) to investigate the properties of seven flavonoid structures with well-reported antioxidant activity: flavan, anthocyanidin, flavanone, flavonol, isoflavone, flavone, and flavan-3-ol. Conformational, structural, magnetic, and electronic analyses were performed using nuclear magnetic resonance, ionization potentials, electron affinity, bond dissociation energy, proton affinity, frontier molecular orbitals (highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO)), and aromaticity through nucleus-independent chemical shifts to analyze these seven flavonoid structures. We revised the influence of hydroxyl groups on the properties of flavonoids and also investigated the influence of the aromaticity of these seven flavonoids on the antioxidant activity.
Collapse
Affiliation(s)
- Sergio Antônio de Souza
Farias
- Laboratory
of Molecular Modeling, Institute of Educational Sciences, Federal University of Western Pará, 68040-255 Santarém, Pará, Brazil
| | - Kauê Santana da Costa
- Institute
of Biodiversity, Federal University of Western
Pará, 68040-255 Santarém, Pará, Brazil
| | - João B.
L. Martins
- Laboratory
of Computational Chemistry, Institute of Chemistry, University of Brasilia, 4478 Brasília, Distrito
Federal, Brazil
| |
Collapse
|
18
|
da Silva TU, Pougy KDC, da Silva ET, Lima CHDS, Machado SDP. Electronic investigation of the effect of substituents on the SOD mimic activity of copper (II) complexes with 8-hydroxyquinoline-derived ligands. J Inorg Biochem 2021; 217:111359. [PMID: 33578252 DOI: 10.1016/j.jinorgbio.2021.111359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/04/2023]
Abstract
Density functional theory (DFT) calculations were used to study the superoxide dismutase (SOD) mimic activity of two Cu2+ complexes with ligands derived from 8-hydroxyquinoline (8-HQ). Electron-donating and -withdrawing substituent groups were inserted into the structures to verify changes in the reactivity. The theoretical parameters obtained were compared and validated with the experimental data available. The results showed that the reduction process occurs with greater participation of the 8-HQ ligand and the oxidation step occurs with participation of the copper atom in the complexes, where the electron received during the reduction step is used to reduce the Cu2+ to Cu+. The calculated electronic affinity showed good correlation with the experimental mimetic activity, and the analysis of this property, of total charge and of molecular orbitals indicated an increase in the mimetic activity with the insertion of electron-withdrawing substituent groups in the structures.
Collapse
Affiliation(s)
- Talis Uelisson da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil.
| | - Karina de Carvalho Pougy
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
| | - Everton Tomaz da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil; Instituto Federal do Rio de Janeiro, 25050-100 Caxias, RJ, Brazil
| | | | - Sérgio de Paula Machado
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
El‐saied FA, Shakdofa MM, Al‐Hakimi AN, Shakdofa AM. Transition metal complexes derived from
N
′‐(4‐fluorobenzylidene)‐2‐(quinolin‐2‐yloxy) acetohydrazide: Synthesis, structural characterization, and biocidal evaluation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fathy A. El‐saied
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| | - Mohamad M.E. Shakdofa
- Department of Chemistry, College of Science and Arts, Khulais University of Jeddah Saudi Arabia
- Inorganic Chemistry Department National Research Centre P.O. 12622, El‐Bohouth St., Dokki Cairo Egypt
| | - Ahmed N. Al‐Hakimi
- Department of Chemistry, College of Science Qassim University Saudi Arabia
- Department of Chemistry, Faculty of Science Ibb University Ibb Yemen
| | - Adel M.E. Shakdofa
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| |
Collapse
|
20
|
Gatto CC, Duarte EDA, Liarte GS, Silva TS, Santiago MB, Martins CHG. Transition metal complexes with 2-acetylpyridine-ethylcarbazate: noncovalent interactions in their structures and antimicrobial studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1777408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Eduardo de A. Duarte
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Gabriela S. Liarte
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Thayná S. Silva
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Mariana B. Santiago
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Carlos H. G. Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| |
Collapse
|