1
|
Gil-Martínez A, Hernández A, Galiana-Roselló C, López-Molina S, Ortiz J, Sastre-Santos Á, García-España E, González-García J. Development and application of metallo-phthalocyanines as potent G-quadruplex DNA binders and photosensitizers. J Biol Inorg Chem 2023:10.1007/s00775-023-02003-3. [PMID: 37452218 PMCID: PMC10368564 DOI: 10.1007/s00775-023-02003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/27/2023] [Indexed: 07/18/2023]
Abstract
Metallo-phthalocyanines (MPc) are common photosensitizers with ideal photophysical and photochemical properties. Also, these molecules have shown to interact with non-canonical nucleic acid structures, such as G-quadruplexes, and modulate oncogenic expression in cancer cells. Herein, we report the synthesis and characterisation of two metallo-phthalocyanines containing either zinc (ZnPc) or nickel (NiPc) in the central aromatic core and four alkyl ammonium lateral chains. The interaction of both molecules with G-quadruplex DNA was assessed by UV-Vis, fluorescence and FRET melting experiments. Both molecules bind strongly to G-quadruplexes and stabilise these structures, being NiPc the most notable G-quadruplex stabiliser. In addition, the photosensitizing ability of both metal complexes was explored by the evaluation of the singlet oxygen generation and their photoactivation in cells. Only ZnPc showed a high singlet oxygen generation either by direct observation or by indirect evaluation using a DPBF dye. The cellular evaluation showed mainly cytoplasmic localization of ZnPc and a decrease of the IC50 values of the cell viability of ZnPc upon light activation of two orders of magnitude. Two metallo-phthalocyanines containing zinc and nickel within the aromatic core have been investigated as G-quadruplex stabilizers and photosensitizers. NiPc shows a high G4 binding but negligible photosensitizing ability while ZnPc exhibits a moderate binding to G-quadruplex together with a high potency to generate singlet oxygen and photocytotoxicity. The interaction with G4s and capacity to be photosensitized is associated with the geometry adopted by the central metal core of the phthalocyanine scaffold.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Adrián Hernández
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Cristina Galiana-Roselló
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Sònia López-Molina
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Javier Ortiz
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Enrique García-España
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Jorge González-García
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain.
| |
Collapse
|
2
|
Binacchi F, Elia C, Cirri D, Van de Griend C, Zhou XQ, Messori L, Bonnet S, Pratesi A, Biver T. A biophysical study of the interactions of palladium(II), platinum(II) and gold(III) complexes of aminopyridyl-2,2'-bipyridine ligands with RNAs and other nucleic acid structures. Dalton Trans 2023; 52:598-608. [PMID: 36562298 DOI: 10.1039/d2dt03483b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal compounds form an attractive class of ligands for a variety of nucleic acids. Five metal complexes bearing aminopyridyl-2,2'-bipyridine tetradentate ligands and possessing a quasi-planar geometry were challenged toward different types of nucleic acid molecules including RNA polynucleotides in the duplex or triplex form, an RNA Holliday four-way junction, natural double helix DNA and a DNA G-quadruplex. The binding process was monitored comparatively using different spectroscopic and melting methods. The binding preferences that emerge from our analysis are discussed in relation to the structural features of the metal complexes.
Collapse
Affiliation(s)
- Francesca Binacchi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Cassandra Elia
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Damiano Cirri
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Corjan Van de Griend
- Leiden Institute of Chemistry, Leiden University, 2333CC Leiden, The Netherlands
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Leiden University, 2333CC Leiden, The Netherlands
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, 2333CC Leiden, The Netherlands
| | - Alessandro Pratesi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tarita Biver
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
3
|
Bazzicalupi C, Bonardi A, Biver T, Ferraroni M, Papi F, Savastano M, Lombardi P, Gratteri P. Probing the Efficiency of 13-Pyridylalkyl Berberine Derivatives to Human Telomeric G-Quadruplexes Binding: Spectroscopic, Solid State and In Silico Analysis. Int J Mol Sci 2022; 23:ijms232214061. [PMID: 36430540 PMCID: PMC9693123 DOI: 10.3390/ijms232214061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction between the series of berberine derivatives 1-5 (NAX071, NAX120, NAX075, NAX077 and NAX079) and human telomeric G-quadruplexes (G4), which are able to inhibit the Telomerase enzyme's activity in malignant cells, was investigated. The derivatives bear a pyridine moiety connected by a hydrocarbon linker of varying length (n = 1-5, with n number of aliphatic carbon atoms) to the C13 position of the parent berberine. As for the G4s, both bimolecular 5'-TAGGGTTAGGGT-3' (Tel12) and monomolecular 5'-TAGGGTTAGGGTTAGGGTTAGGG-3' (Tel23) DNA oligonucleotides were considered. Spectrophotometric titrations, melting tests, X-ray diffraction solid state analysis and in silico molecular dynamics (MD) simulations were used to describe the different systems. The results were compared in search of structure-activity relationships. The analysis pointed out the formation of 1:1 complexes between Tel12 and all ligands, whereas both 1:1 and 2:1 ligand/G4 stoichiometries were found for the adduct formed by NAX071 (n = 1). Tel12, with tetrads free from the hindrance by the loop, showed a higher affinity. The details of the different binding geometries were discussed, highlighting the importance of H-bonds given by the berberine benzodioxole group and a correlation between the strength of binding and the hydrocarbon linker length. Theoretical (MD) and experimental (X-ray) structural studies evidence the possibility for the berberine core to interact with one or both G4 strands, depending on the constraints given by the linker length, thus affecting the G4 stabilization effect.
Collapse
Affiliation(s)
- Carla Bazzicalupi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
- Correspondence: (C.B.); (P.G.)
| | - Alessandro Bonardi
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA—Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Marta Ferraroni
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Francesco Papi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA—Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
| | - Matteo Savastano
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Paolo Lombardi
- Naxospharma srl, Via G. Di Vittorio 70, Novate Milanese, 20026 Milano, Italy
| | - Paola Gratteri
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA—Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
- Correspondence: (C.B.); (P.G.)
| |
Collapse
|
4
|
Stockert JC, Durantini EN, Gonzalez Lopez EJ, Durantini JE, Villanueva A, Horobin RW. Fluorescence labeling of mitochondria in living cells by the cationic photosensitizer ZnTM2,3PyPz, and the possible roles of redox processes and pseudobase formation in facilitating dye uptake. Biotech Histochem 2022; 97:473-479. [DOI: 10.1080/10520295.2022.2090603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- J. C. Stockert
- Buenos Aires University, Argentina
- Bernardo O’Higgins University, Chile
| | | | | | | | | | | |
Collapse
|
5
|
Macii F, Cupellini L, Stifano M, Santolaya J, Pérez-Arnaiz C, Pucci A, Barone G, García B, Busto N, Biver T. Combined spectroscopic and theoretical analysis of the binding of a water-soluble perylene diimide to DNA/RNA polynucleotides and G-quadruplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119914. [PMID: 34015745 DOI: 10.1016/j.saa.2021.119914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
We present here a combined spectroscopic and theoretical analysis of the binding of N,N'-bis(2-(1-piperazino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide dichloride (PZPERY) to different biosubstrates. Absorbance titrations and circular dichroism experiments, melting studies and isothermal calorimetry (ITC) titrations reveal a picture where the binding to natural double-stranded DNA is very different from that to double and triple-stranded RNAs (poly(A)∙poly(U) and poly(U)∙poly(A)⁎poly(U)). As confirmed also by the structural and energetic details clarified by density functional theory (DFT) calculations, intercalation occurs for DNA, with a process driven by the combination of aggregates disruption and monomers intercalation. Oppositely, for RNAs, no intercalation but groove binding with the formation of supramolecular aggregates is observed. Among all the tested biosubstrates, the affinity of PZPERY towards DNA G-quadruplexes (G4) is the greatest one with a preference for human telomeric G4s. Focusing on hybrid G4 forms, either sitting-atop ("tetrad-parallel") or lateral ("groove-parallel") binding modes were considered in the discussion of the experimental results and molecular dynamics (MD) simulations. Both turned out to be possible concurrently, in agreement also with the experimental binding stoichiometries higher than 2:1.
Collapse
Affiliation(s)
- Francesca Macii
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Mariassunta Stifano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Javier Santolaya
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Cristina Pérez-Arnaiz
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Andrea Pucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Begoña García
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Natalia Busto
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|