1
|
Pourzadi N, Gailer J. The emerging application of LC-based metallomics techniques to unravel the bioinorganic chemistry of toxic metal(loid)s. J Chromatogr A 2024; 1736:465409. [PMID: 39383623 DOI: 10.1016/j.chroma.2024.465409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
The on-going anthropogenic emission of toxic metal(loid) species into the environment contaminates the food supply and drinking water resources in various parts of the world. Given that inorganic pollutants cannot be degraded, their increased influx into the bloodstream of babies, children and pregnant women is inevitable. Since the ramifications of the ensuing environmental exposure on human health remain poorly defined, fundamentally new insight into their bioinorganic chemistry in organisms is urgently needed. Based on the flow of dietary constituents through organisms, the interaction of toxic metal(loid) species with biomolecules in the bloodstream deserve particular attention as they play an integral role in the mechanisms of their chronic toxicity. Gaining insight into these bioinorganic processes is hampered by the biological complexity of plasma/red blood cells and the low concentrations of the metal(loid) species of interest, but can be overcome by employing LC techniques hyphenated to atomic spectroscopic detectors (i.e. metallomics techniques). This perspective aims to highlight the potential of unconventional hyphenated separation modes to advance our understanding of the bioinorganic chemistry of toxic metal(loid) species in the bloodstream-organ system. Four examples are illustrated. The application of anion-exchange (AEX) and size-exclusion chromatography (SEC) provided new insight into the blood-based bioinorganic mechanisms that direct Cd2+ and MeHg+ to target organs. AEX chromatography also allowed to observe the formation of complexes between Hg2+ and MeHg+ with L-cysteine at pH 7.4, that are implicated in their organ uptake. Lastly, the application of reversed phase (RP) chromatography revealed a possible cytosolic mechanism by which N-acetyl-L-cysteine binds to MeHg+ in the presence of cytosolic glutathione (GSH). New insight into other bioinorganic processes may advance the regulatory framework to better protect public health.
Collapse
Affiliation(s)
- Negar Pourzadi
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
2
|
Shao Y, Zheng L, Jiang Y. Cadmium toxicity and autophagy: a review. Biometals 2024; 37:609-629. [PMID: 38277035 DOI: 10.1007/s10534-023-00581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.
Collapse
Affiliation(s)
- Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Gailer J. Toward a Mechanism-Driven Integrated Framework to Link Human Exposure to Multiple Toxic Metal(loid) Species with Environmental Diseases. Int J Mol Sci 2024; 25:3393. [PMID: 38542366 PMCID: PMC10969815 DOI: 10.3390/ijms25063393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/11/2024] Open
Abstract
The ongoing anthropogenic pollution of the biosphere with As, Cd, Hg and Pb will inevitably result in an increased influx of their corresponding toxic metal(loid) species into the bloodstream of human populations, including children and pregnant women. To delineate whether the measurable concentrations of these inorganic pollutants in the bloodstream are tolerable or implicated in the onset of environmental diseases urgently requires new insight into their dynamic bioinorganic chemistry in the bloodstream-organ system. Owing to the human exposure to multiple toxic metal(loid) species, the mechanism of chronic toxicity of each of these needs to be integrated into a framework to better define the underlying exposure-disease relationship. Accordingly, this review highlights some recent advances into the bioinorganic chemistry of the Cd2+, Hg2+ and CH3Hg+ in blood plasma, red blood cells and target organs and provides a first glimpse of their emerging mechanisms of chronic toxicity. Although many important knowledge gaps remain, it is essential to design experiments with the intent of refining these mechanisms to eventually establish a framework that may allow us to causally link the cumulative exposure of human populations to multiple toxic metal(loid) species with environmental diseases of unknown etiology that do not appear to have a genetic origin. Thus, researchers from a variety of scientific disciplines need to contribute to this interdisciplinary effort to rationally address this public health threat which may require the implementation of stronger regulatory requirements to improve planetary and human health, which are fundamentally intertwined.
Collapse
Affiliation(s)
- Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Jin Y, Cheng Z, He Y, Xu J, Shi J. Dynamic response of cadmium immobilization to a Ca-Mg-Si soil conditioner in the contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168394. [PMID: 37956833 DOI: 10.1016/j.scitotenv.2023.168394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Soil conditioners are often used to immobilize soil heavy metals. Understanding the transfer of Cd in soil-plant system to different application rates and modes of soil conditioners application is essential for food safety. The stabilization persistence of soil conditioners in immobilizing Cd, to date however, is still limited. In this study, the stabilization persistence of a Ca-Mg-Si soil conditioner (SC) was assessed based on a six-year Cd-contaminated paddy field study with growth of two rice local main varieties (Yongyou17-YY and Xiushui14-XS) and four application rates (1500 kg ha-1 (low), and 3000 kg ha-1 (high) for the first year only, and 1500 kg ha-1 and 3000 kg ha-1 every year). Results showed that continuous SC application with high rate increased soil pH, simultaneously with more water soluble and exchangeable Cd was transferred to Fe-Mn oxides bound and carbonate-bound Cd in the first 3-4 years; while the low rate was only effective with growth of YY that were applied for a shorter period of time. Statistical analysis indicated that the stability effect of SC was integratedly affected by soil pH, SC application rate, and meteorological factors (precipitation and temperature). Especially, soil fractionation contributed the most changes of Cd availability in soil, while meteorological factors, SC application rate and crop varieties altogether exhibited the great effect on Cd accumulation in grain. Our finding demonstrated the potential long-term stabilization of SC in soil Cd immobilization, with the performance needed for further verification on the basis of different soil types.
Collapse
Affiliation(s)
- Yi Jin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhongyi Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
5
|
Gautam A, Gailer J. More Effective Mobilization of Hg 2+ from Human Serum Albumin Compared to Cd 2+ by L-Cysteine at Near-Physiological Conditions. TOXICS 2023; 11:599. [PMID: 37505565 PMCID: PMC10383730 DOI: 10.3390/toxics11070599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Although chronic low-level exposure to Hg2+ and Cd2+ causes human nephrotoxicity, the bioinorganic processes that deliver them to their target organs are poorly understood. Since the plasma protein human serum albumin (HSA) has distinct binding sites for these metal ions, we wanted to gain insight into these translocation processes and have employed size-exclusion chromatography coupled on-line to an inductively coupled plasma atomic emission spectrometer using phosphate-buffered saline mobile phases. When HSA 'labeled' with Hg2+ and Cd2+ (1:0.1:0.1) using 300 μM of L-methionine was analyzed, the co-elution of a single C, S, Cd, and Hg peak was observed, which implied the intact bis-metalated HSA complex. Since human plasma contains small molecular weight thiols and sulfur-containing metabolites, we analyzed the bis-metalated HSA complex with mobile phases containing 50-200 µM of L-cysteine (Cys), D,L-homocysteine (hCys), or glutathione (GSH), which provided insight into the comparative mobilization of each metal from their respective binding sites on HSA. Interestingly, 50 µM Cys, hCys, or GSH mobilized Hg2+ from its HSA binding site but only partially mobilized Cd2+ from its binding site. Since these findings were obtained at conditions simulating near-physiological conditions of plasma, they provide a feasible explanation for the higher 'mobility' of Hg2+ and its concomitant interaction with mammalian target organs compared to Cd2+. Furthermore, 50 µM Cys resulted in the co-elution of similar-sized Hg and Cd species, which provides a biomolecular explanation for the nephrotoxicity of Hg2+ and Cd2+.
Collapse
Affiliation(s)
- Astha Gautam
- Department of Chemistry, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Gautam A, Gomez A, Mendoza Rengifo E, George GN, Pickering IJ, Gailer J. Structural Characterization of Toxicologically Relevant Cd 2+-L-Cysteine Complexes. TOXICS 2023; 11:294. [PMID: 37112521 PMCID: PMC10144473 DOI: 10.3390/toxics11040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The exposure of humans to Cd exerts adverse human health effects at low chronic exposure doses, but the underlying biomolecular mechanisms are incompletely understood. To gain insight into the toxicologically relevant chemistry of Cd2+ in the bloodstream, we employed an anion-exchange HPLC coupled to a flame atomic absorption spectrometer (FAAS) using a mobile phase of 100 mM NaCl with 5 mM Tris-buffer (pH 7.4) to resemble protein-free blood plasma. The injection of Cd2+ onto this HPLC-FAAS system was associated with the elution of a Cd peak that corresponded to [CdCl3]-/[CdCl4]2- complexes. The addition of 0.1-10 mM L-cysteine (Cys) to the mobile phase significantly affected the retention behavior of Cd2+, which was rationalized by the on-column formation of mixed CdCysxCly complexes. From a toxicological point of view, the results obtained with 0.1 and 0.2 mM Cys were the most relevant because they resembled plasma concentrations. The corresponding Cd-containing (~30 μM) fractions were analyzed by X-ray absorption spectroscopy and revealed an increased sulfur coordination to Cd2+ when the Cys concentration was increased from 0.1 to 0.2 mM. The putative formation of these toxicologically relevant Cd species in blood plasma was implicated in the Cd uptake into target organs and underscores the notion that a better understanding of the metabolism of Cd in the bloodstream is critical to causally link human exposure with organ-based toxicological effects.
Collapse
Affiliation(s)
- Astha Gautam
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Amanda Gomez
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Emérita Mendoza Rengifo
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Graham N. George
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Ingrid J. Pickering
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
7
|
Tang X, Xiao B, Zhao Q, Hu W, McKenery A, Zhong Z. Renal glucose transporters play a role in removal of cadmium from kidney cells mediated by GMDTC - A novel metal chelator. Hum Exp Toxicol 2023; 42:9603271231183056. [PMID: 37295442 DOI: 10.1177/09603271231183056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal, exposure to which leads to adverse health effects including chronic kidney damage. Tremendous efforts have been explored in identifying safe chelating agents for removing accumulated Cd from kidney, but with limited success owing to their associated side effects and the ineffectiveness in eliminating Cd. A newly developed chelating agent, sodium (S)-2-(dithiocarboxylato((2S,3 R,4R,5 R)-2,3,4,5,6-pentahydroxyhexyl) amino)-4(methylthio)butanoate (GMDTC), has been shown to effectively mobilize Cd from kidney. However, the mechanism(s) of removal are unclear, while it has been hypothesized that renal glucose transporters potentially play key roles mainly because GMDTC contains an open chain glucose moiety. To test this hypothesis, we utilized the CRISPR/Cas9 technology and human kidney tubule HK-2 cells, and constructed sodium-dependent glucose transporter 2 (SGLT2) or glucose transporter 2 (GLUT2) gene knockout cell lines. Our data showed that GMDTC's ability in removing Cd from HK-2 cells was significantly reduced both in GLUT2-/- or SGLT2-/- cells, with a removal ratio reduced from 28.28% in the parental HK-2 cells to 7.37% in GLUT2-/- cells and 14.6% in SGLT2-/- cells. Similarly, knocking out the GLUT2 or SGLT2 led to a compromised protective effect of GMDTC in reducing cytotoxicity of HK-2 cells. This observation was further observed in animal studies, in which the inhibition of GLUT2 transporter by phloretin treatment resulted in reduced efficiency of GMDTC in removing Cd from the kidney. Altogether, our results show that GMDTC is safe and highly efficient in removing Cd from the cells, and this effect is mediated by renal glucose transporters.
Collapse
Affiliation(s)
- Xiaojiang Tang
- School of Public Health, Southern Medical University, Guangzhou, China
- Jianersheng (Zhuhai) Pharmtech Co., Ltd., Zhuhai, China
| | - Bo Xiao
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Qile Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Wei Hu
- Jianersheng (Zhuhai) Pharmtech Co., Ltd., Zhuhai, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Amber McKenery
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zhiyong Zhong
- Jianersheng (Zhuhai) Pharmtech Co., Ltd., Zhuhai, China
- Guangdong e-fang Pharmaceutical Co., Ltd., Foshan, China
| |
Collapse
|
8
|
Iqbal Z, Quds R, Mahmood R. Cadmium chloride generates cytotoxic reactive species that cause oxidative damage and morphological changes in human erythrocytes. Biochem Cell Biol 2022; 100:485-498. [PMID: 36288609 DOI: 10.1139/bcb-2022-0188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cadmium chloride (CdCl2) is a widely used industrial compound that exhibits multiple organ toxicity. Cadmium is transported through blood where erythrocytes are exposed to its action. Here the effect of CdCl2 on human erythrocytes was examined under in vitro conditions. Human erythrocytes were treated with 0.01-0.5 mM CdCl2 for 24 h at 37 °C. Lysates were made from CdCl2 treated and untreated (control) cells and used for further analysis. CdCl2 treatment resulted in marked hemolysis of erythrocytes and oxidation of hemoglobin to methemoglobin. This will result in anemia and also reduce the oxygen carrying ability of erythrocytes. Hemoglobin oxidation was accompanied by degradation of heme and release of free ferrous iron moiety. Further analysis showed elevated lipid hydroperoxides and formation of advanced oxidation protein products along with reduction in total sulfhydryl content, indicating the generation of oxidative stress condition in the cell. Incubation of erythrocytes with CdCl2 enhanced generation of reactive oxygen and nitrogen species, decreased the antioxidant power and inhibited pathways of glucose metabolism. Plasma membrane was damaged as indicated by enhanced osmotic fragility and inhibition of membrane bound enzymes. This was confirmed by electron microscopy which showed formation of echinocytes. These results show that CdCl2 generates reactive species which impair the antioxidant system resulting in oxidative damage to erythrocytes.
Collapse
Affiliation(s)
- Zarmin Iqbal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P, India
| | - Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P, India
| |
Collapse
|
9
|
Integrative Metallomics Studies of Toxic Metal(loid) Substances at the Blood Plasma–Red Blood Cell–Organ/Tumor Nexus. INORGANICS 2022. [DOI: 10.3390/inorganics10110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Globally, an estimated 9 million deaths per year are caused by human exposure to environmental pollutants, including toxic metal(loid) species. Since pollution is underestimated in calculations of the global burden of disease, the actual number of pollution-related deaths per year is likely to be substantially greater. Conversely, anticancer metallodrugs are deliberately administered to cancer patients, but their often dose-limiting severe adverse side-effects necessitate the urgent development of more effective metallodrugs that offer fewer off-target effects. What these seemingly unrelated events have in common is our limited understanding of what happens when each of these toxic metal(loid) substances enter the human bloodstream. However, the bioinorganic chemistry that unfolds at the plasma/red blood cell interface is directly implicated in mediating organ/tumor damage and, therefore, is of immediate toxicological and pharmacological relevance. This perspective will provide a brief synopsis of the bioinorganic chemistry of AsIII, Cd2+, Hg2+, CH3Hg+ and the anticancer metallodrug cisplatin in the bloodstream. Probing these processes at near-physiological conditions and integrating the results with biochemical events within organs and/or tumors has the potential to causally link chronic human exposure to toxic metal(loid) species with disease etiology and to translate more novel anticancer metal complexes to clinical studies, which will significantly improve human health in the 21st century.
Collapse
|
10
|
Wang L, Xu M, Chen J, Zhang X, Wang Q, Wang Y, Cui J, Zhang S. Distinct adverse outcomes and lipid profiles of erythrocytes upon single and combined exposure to cadmium and microplastics. CHEMOSPHERE 2022; 307:135942. [PMID: 35961459 DOI: 10.1016/j.chemosphere.2022.135942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The growing accumulation of environmental microplastics (MPs) has become a global concern. MPs are capable to interact with other environmental contaminants leading to altered toxicity. Red blood cells (RBCs), are the target with highest priority for most of toxic xenobiotics after entering blood stream. Whether co-existence of MPs changes the toxicity of cadmium, a typical hemolysis inducer, in RBCs is unknown. We investigated the adverse effects of CdCl2 and Polystyrene-MPs (PS-MPs) on RBCs in mice. We found that CdCl2 induced mild microcytic hypochromic anemia while PS-MPs induced polycythemia vera, indicating distinct outcomes between them. Moreover, co-treatment of PS-MPs with CdCl2 did not change the phenotype of microcytic hypochromic anemia, indicating an antagonistic relationship between CdCl2 and PS-MPs. However, the lipid profiles were also distinct between single exposure and combined exposure to CdCl2 and PS-MPs. The significant changed lipids were mainly involved in altering the physiochemical or biological properties of RBCs, including decreased membrane components, disrupted bilayer thickness and intrinsic lipid curvature. These results indicated impaired membrane functions of RBCs. The altered lipid profiles observed in the current study may represent new and previously unrecognized harmful characteristics of cadmium and MPs on erythrocytes at low dose without apparent induction of anemia.
Collapse
Affiliation(s)
- Lixin Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China.
| | - Man Xu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Jiamin Chen
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Xuan Zhang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Quanshu Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Yingxue Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China.
| |
Collapse
|
11
|
Cadmium-induced splenic lymphocytes anoikis is not mitigated by activating Nrf2-mediated antioxidative defense response. J Inorg Biochem 2022; 234:111882. [DOI: 10.1016/j.jinorgbio.2022.111882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022]
|
12
|
Bridle TG, Doroudian M, White W, Gailer J. Physiologically relevant hCys concentrations mobilize MeHg from rabbit serum albumin to form MeHg-hCys complexes. Metallomics 2022; 14:6527585. [PMID: 35150279 DOI: 10.1093/mtomcs/mfac010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 11/14/2022]
Abstract
Methylmercury (MeHg) is one of the most potent neurotoxins to which humans are exposed via the consumption of fish from which it is effectively absorbed via the gastrointestinal tract into the bloodstream. Its interactions with plasma proteins, small molecular weight (SMW) molecules, and red blood cells, however, are incompletely understood, but critical as they determine if and how much MeHg reaches target organs. To better define the role that SMW thiols play in the delivery of MeHg to known transporters located at the placental and blood-brain barrier, we have employed size exclusion chromatography-inductively coupled plasma-atomic emission spectroscopy to analyze MeHg-spiked rabbit plasma in the absence and presence of SMW thiols dissolved in the PBS-buffer mobile phase. While 300 µM L-methionine did not affect the binding of MeHg to rabbit serum albumin (RSA), cysteine (Cys), homocysteine (hCys) and glutathione (GSH) resulted in the elution of the main Hg-peak in the SMW elution range. In addition, 50 µM of hCys or Cys in the mobile phase resulted in the mobilization of MeHg from RSA in rabbit plasma and from pure RSA in solution. The Hg-peak that eluted in the SMW elution range (50 µM of hCys) was identified by electrospray ionization-mass spectrometry as a MeHg-hCys complex. Since L-type amino acid transporters are present at the blood brain barrier (BBB) which facilitate the uptake of MeHg-Cys species into the brain, our results contribute to establish the bioinorganic mechanisms that deliver MeHg to the BBB, which is critical to predict organ-based adverse health effects.
Collapse
Affiliation(s)
- Tristen G Bridle
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Maryam Doroudian
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Wade White
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
13
|
Bridle TG, Kumarathasan P, Gailer J. Toxic Metal Species and 'Endogenous' Metalloproteins at the Blood-Organ Interface: Analytical and Bioinorganic Aspects. Molecules 2021; 26:molecules26113408. [PMID: 34199902 PMCID: PMC8200099 DOI: 10.3390/molecules26113408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 01/15/2023] Open
Abstract
Globally, human exposure to environmental pollutants causes an estimated 9 million deaths per year and it could also be implicated in the etiology of diseases that do not appear to have a genetic origin. Accordingly, there is a need to gain information about the biomolecular mechanisms that causally link exposure to inorganic environmental pollutants with distinct adverse health effects. Although the analysis of blood plasma and red blood cell (RBC) cytosol can provide important biochemical information about these mechanisms, the inherent complexity of these biological matrices can make this a difficult task. In this perspective, we will examine the use of metalloentities that are present in plasma and RBC cytosol as potential exposure biomarkers to assess human exposure to inorganic pollutants. Our primary objective is to explore the principal bioinorganic processes that contribute to increased or decreased metalloprotein concentrations in plasma and/or RBC cytosol. Furthermore, we will also identify metabolites which can form in the bloodstream and contain essential as well as toxic metals for use as exposure biomarkers. While the latter metal species represent useful biomarkers for short-term exposure, endogenous plasma metalloproteins represent indicators to assess the long-term exposure of an individual to inorganic pollutants. Based on these considerations, the quantification of metalloentities in blood plasma and/or RBC cytosol is identified as a feasible research avenue to better understand the adverse health effects that are associated with chronic exposure of various human populations to inorganic pollutants. Exposure to these pollutants will likely increase as a consequence of technological advances, including the fast-growing applications of metal-based engineering nanomaterials.
Collapse
Affiliation(s)
- Tristen G. Bridle
- Department of Chemistry, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Premkumari Kumarathasan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Jürgen Gailer
- Department of Chemistry, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Correspondence:
| |
Collapse
|