1
|
Ishfaq S, Nisar S, Iqbal S, Ali S, Ali ST, Din E, Alsaiari NS, Dahlous KA, Javed MS, Bocchetta P. A New MBH Adduct as an Efficient Ligand in the Synthesis of Metallodrugs: Characterization, Geometrical Optimization, XRD, Biological Activities, and Molecular Docking Studies. Molecules 2022; 27:8150. [PMID: 36500251 PMCID: PMC9735827 DOI: 10.3390/molecules27238150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
This article reports the synthesis, characterization, geometrical optimization, and biological studies of new MBH-based organometallic compounds of medicinal significance. The ligand (MNHA) was prepared via the Morita-Baylis-Hillman (MBH) synthetic route, from aromatic aldehyde containing multiple functional groups. Metal complexes were prepared in an alkaline medium and under other suitable reaction conditions. Spectral and elemental analyses were used to identify the structural and molecular formulas of each compound. Optimized geometry was determined through density functional theory (DFT) B3LYP and 6-311++ G (d,p) basis set for the MBH adduct, whereas structures of novel complexes were optimized with the semi-empirical PM6 method. Powder XRD analysis furnished the crystal class of complexes, with Co3+, Cr3+, and Mn2+ being cubic, while Ni2+ was hexagonal, and Cu2+ was orthorhombic. Moreover, the ligand, along with Ni2+ and Co3+ complexes, showed profound antibacterial action against S. aureus, E. coli, B. pumilis, and S. typhi. Additionally, all of the complexes were shown to persist in the positive antioxidant potential of the ligand. Contrarily, not a single metal complex conserved the antifungal potentials of the ligand.
Collapse
Affiliation(s)
- Shazia Ishfaq
- Department of Chemistry, Faculty of Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shazia Nisar
- Department of Chemistry, Faculty of Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sadaf Iqbal
- Department of Chemistry, Faculty of Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Saqib Ali
- Department of Chemistry, Faculty of Basic and Applied Sciences, University of Kotli, Kotli 11100, Pakistan
| | - Syed Tariq Ali
- Department of Chemistry, Faculty of Sciences, University of Karachi, Karachi 75270, Pakistan
| | - ElSayed Din
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kholood A. Dahlous
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Patrizia Bocchetta
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
2
|
Song L, Bai H, Liu C, Gong W, Wang A, Wang L, Zhao Y, Zhao X, Wang H. Synthesis, Biomacromolecular Interactions, Photodynamic NO Releasing and Cellular Imaging of Two [RuCl(qn)(Lbpy)(NO)]X Complexes. Molecules 2021; 26:molecules26092545. [PMID: 33925453 PMCID: PMC8123785 DOI: 10.3390/molecules26092545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Two light-activated NO donors [RuCl(qn)(Lbpy)(NO)]X with 8-hydroxyquinoline (qn) and 2,2′-bipyridine derivatives (Lbpy) as co-ligands were synthesized (Lbpy1 = 4,4′-dicarboxyl-2,2′-dipyridine, X = Cl− and Lbpy2 = 4,4′-dimethoxycarbonyl-2,2′-dipyridine, X = NO3−), and characterized using ultraviolet–visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (1H NMR), elemental analysis and electrospray ionization mass spectrometry (ESI-MS) spectra. The [RuCl(qn)(Lbpy2)(NO)]NO3 complex was crystallized and exhibited distorted octahedral geometry, in which the Ru–N(O) bond length was 1.752(6) Å and the Ru–N–O angle was 177.6(6)°. Time-resolved FT-IR and electron paramagnetic resonance (EPR) spectra were used to confirm the photoactivated NO release of the complexes. The binding constant (Kb) of two complexes with human serum albumin (HSA) and DNA were quantitatively evaluated using fluorescence spectroscopy, Ru-Lbpy1 (Kb~106 with HSA and ~104 with DNA) had higher affinity than Ru-Lbpy2. The interactions between the complexes and HSA were investigated using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and EPR spectra. HSA can be used as a carrier to facilitate the release of NO from the complexes upon photoirradiation. The confocal imaging of photo-induced NO release in living cells was successfully observed with a fluorescent NO probe. Moreover, the photocleavage of pBR322 DNA for the complexes and the effect of different Lbpy substituted groups in the complexes on their reactivity were analyzed.
Collapse
Affiliation(s)
- Luna Song
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Hehe Bai
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Chenyang Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
| | - Ai Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
| | - Li Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Yi Zhao
- Shanxi Key Laboratory of Pharmaceutical Biotechnology, Taiyuan 030006, China;
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA;
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
- Correspondence: ; Tel./Fax: +86-351-7010699
| |
Collapse
|