1
|
Hou Z, Yan B, Zhao Y, Peng B, Zhang S, Su B, Li K, Zhang C. Terahertz Spectra of Mannitol and Erythritol: A Joint Experimental and Computational Study. Molecules 2024; 29:3154. [PMID: 38999105 PMCID: PMC11243331 DOI: 10.3390/molecules29133154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Sugar substitutes, which generally refer to a class of food additives, mostly have vibration frequencies within the terahertz (THz) band. Therefore, THz technology can be used to analyze their molecular properties. To understand the characteristics of sugar substitutes, this study selected mannitol and erythritol as representatives. Firstly, PXRD and Raman techniques were used to determine the crystal structure and purity of mannitol and erythritol. Then, the THz time-domain spectroscopy (THz-TDS) system was employed to measure the spectral properties of the two sugar substitutes. Additionally, density functional theory (DFT) was utilized to simulate the crystal configurations of mannitol and erythritol. The experimental results showed good agreement with the simulation results. Finally, microfluidic chip technology was used to measure the THz spectroscopic properties of the two sugar substitutes in solution. A comparison was made between their solid state and aqueous solution state, revealing a strong correlation between the THz spectra of the two sugar substitutes in both states. Additionally, it was found that the THz spectrum of a substance in solution is related to its concentration. This study provides a reference for the analysis of sugar substitutes.
Collapse
Affiliation(s)
- Zeyu Hou
- Department of Physics, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Beijing 100048, China
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
| | - Bingxin Yan
- Department of Physics, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Beijing 100048, China
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
| | - Yuhan Zhao
- Department of Physics, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Beijing 100048, China
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
| | - Bo Peng
- Department of Physics, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Beijing 100048, China
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
| | - Shengbo Zhang
- Department of Physics, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Beijing 100048, China
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
| | - Bo Su
- Department of Physics, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Beijing 100048, China
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Cunlin Zhang
- Department of Physics, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Beijing 100048, China
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
| |
Collapse
|
2
|
Terahertz spectroscopy for quantitatively elucidating the crystal transformation of chiral histidine enantiomers to racemic compounds. Food Chem 2023; 406:135043. [PMID: 36450194 DOI: 10.1016/j.foodchem.2022.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/26/2022]
Abstract
d-Histidine (d-His), l-Histidine (l-His), and their racemic compound dl-Histidine (dl-His) have different stereo chirality, making them intrinsic diverse functionalities to the living system. Identifying the configuration and crystal structures of enantiomers and the racemic compound is always the foremost requirement in processing protein foods. Although these features can be analyzed by spectroscopic technologies individually, it remains challenging to incorporate these complex methods into a facile analytical strategy. Herein, we propose a terahertz spectroscopy with solid-state density functional theory to both distinguish the configurational difference and quantify the crystal transformation from l-His and d-His to dl-His. By comparison with X-ray diffraction analysis, the validity of the crystal transformation evaluation based on terahertz spectroscopy is verified. A normalized fitting line regarding the terahertz absorption frequency and intensity is calculated to quantitatively elucidate the crystal transformation from enantiomers to dl-His. Our findings provide a new analytical approach to the research on food chemistry.
Collapse
|