1
|
Cheng YA, Chien SY, Chen PPY, Hsu IJ, Lee CM. Photoinduced NO production from a mononuclear {MnNO} 6 complex bearing a metal-diaryldisulphide ligand. Dalton Trans 2025; 54:7415-7424. [PMID: 40223644 DOI: 10.1039/d5dt00165j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A solution of six-coordinate [Mn(PS2)2] (1) is inert towards nitric oxide (NO) at room temperature. In the presence of a proton source such as p-toluenesulfonic acid or perchloric acid, however, the treatment of 1 with NO in the dark leads to the formation of {MnNO}6 [Mn(NO)(SPS-SPS)] (2) with a metal-diaryldisulphide ligand, as confirmed by several spectroscopy investigations, including single-crystal X-ray diffraction. A possible pathway for the formation of 2 was determined through theoretical studies and involves the following: (i) the thiolato sulphur in 1 interacts with H+ to generate an intermediate [Mn(PS2)(PS2H)]+ (A) with an S⋯H interaction; (ii) the reaction of A with NO yields HNO and an Mn(IV)-bound-thiyl radical species (B); and (iii) the nucleophilicity of the thiyl radical B to an adjacent thiolato sulphur produces a five-coordinate Mn(III)-diaryldisulphide species (C), which reacts with the generated HNO to yield 2. Complex 2 is sensitive to visible light. When photolysis of 2 in solution is performed, complex 1 is regenerated and NO is released, which is related to metal-disulphide/metal-thiolate interconversion.
Collapse
Affiliation(s)
- Yu-An Cheng
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan.
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chien-Ming Lee
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan.
| |
Collapse
|
2
|
Sun S, Choe J, Cho J. Photo-triggered NO release of nitrosyl complexes bearing first-row transition metals and therapeutic applications. Chem Sci 2024; 15:20155-20170. [PMID: 39583571 PMCID: PMC11580031 DOI: 10.1039/d4sc06820c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
In biological systems, nitric oxide (NO) is a crucial signaling molecule that regulates a wide range of physiological and pathological processes. Given the significance of NO, there has been considerable interest in delivering NO exogenously, particularly through light as a non-invasive therapeutic approach. However, due to the high reactivity and instability of NO under physiological conditions, directly delivering NO to targeted sites remains challenging. In recent decades, photo-responsive transition metal-nitrosyl complexes, especially based on first-row transition metals such as Mn, Fe, and Co, have emerged as efficient NO donors, offering higher delivery efficiency and quantum yields than heavy metal-nitrosyl complexes under light exposure. This review provides a comprehensive overview of current knowledge and recent developments in the field of photolabile first-row transition metal-nitrosyl complexes, focusing on the structural and electronic properties, photoreactivity, photodissociation mechanisms, and potential therapeutic applications. By consolidating the key features of photoactive nitrosyl complexes, the review offers deeper insights and highlights the potential of first-row transition metal-nitrosyl complexes as versatile tools for photo-triggered NO delivery.
Collapse
Affiliation(s)
- Seungwon Sun
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jisu Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
3
|
Gonçalves FS, Macedo LJA, Souza ML, Lehnert N, Crespilho FN, Roveda Jr AC, Cardoso DR. In Situ FT-IR Spectroelectrochemistry Reveals Mechanistic Insights into Nitric Oxide Release from Ruthenium(II) Nitrosyl Complexes. Inorg Chem 2024; 63:21387-21396. [PMID: 39475160 PMCID: PMC11558665 DOI: 10.1021/acs.inorgchem.4c03185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/12/2024]
Abstract
Ruthenium(II) tetraamine nitrosyl complexes with N-heterocyclic ligands are known for their potential as nitric oxide (NO•) donors, capable of releasing NO• through either direct photodissociation or one-electron reduction of the Ru(II)NO+ center. This study delivers a novel insight into the one-electron reduction mechanism for the model complex trans-[RuII(NO)(NH3)4(py)]3+ (RuNOpy, py = pyridine) in phosphate buffer solution (pH 7.4). In situ FT-IR spectroelectrochemistry reveals that the pyridine ligand is readily released upon one-electron reduction of the nitrosyl complex, a finding supported by nuclear magnetic resonance spectroscopy (1H NMR) and electrochemistry coupled to mass spectrometry (EC-MS), which detect free pyridine in solution. However, direct evidence of NO• release from RuNOpy as the primary step following reduction was not observed. Interestingly, FT-IR results indicate that the isomers of the nitrosyl complex, cis-[Ru(NO)(NH3)4(OH)]+ and trans-[Ru(NO)(NH3)4(OH)]+, are formed following reduction and pyridine labilization, initiating an outer-sphere electron transfer process that triggers a chain electron transfer reaction. Finally, nitric oxide is liberated as an end product, arising from the reduction of the hydroxyl isomer complexes cis-[Ru(NO)(NH3)4(OH)]2+ and trans-[Ru(NO)(NH3)4(OH)]2+. This study provides new insights into the reduction mechanism and transformation pathways of ruthenium nitrosyl complexes, contributing to our understanding of their potential as NO• donors.
Collapse
Affiliation(s)
| | - Lucyano J. A. Macedo
- São
Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil
- Brazilian
Synchrotron Light Laboratory, Brazilian Center for Research in Energy
and Materials, Campinas 13084-971, SP, Brazil
| | - Maykon L. Souza
- São
Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil
| | - Nicolai Lehnert
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank N. Crespilho
- São
Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil
| | - Antonio C. Roveda Jr
- São
Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil
| | - Daniel R. Cardoso
- São
Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil
| |
Collapse
|
4
|
Shi J, Liu Y, Jiao S, Wu T, Wang A, Wang W, Xie L, Liu Y, Wang H. Synthesis, structure, spectra, cytotoxicity and photo induced NO release of four isomeric nitrosylruthenium complexes. Nitric Oxide 2024; 152:58-68. [PMID: 39313019 DOI: 10.1016/j.niox.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Four isomeric nitrosyl ruthenium complexes [RuCl(2mqn)(Val)(NO)] (1-4) were prepared (2mqn, 2-methyl-8-hydroxyquinoline; Val, l-valine) and characterized by 1H NMR, 13C NMR, absorption spectrum, electrospray ionization mass spectrometry, and X-ray crystal diffraction. Time-resolved FT-IR and fluorescence spectroscopy were used to monitor photo-induced NO release in solution, while NO released in living cells was imaged using a selective fluorescent probe. The isomeric complexes showed different levels of cytotoxicity against HeLa cells, and slightly photo-enhanced anti-proliferative activity was observed. The isomeric complexes 1-4 inhibited the growth of HeLa cells by inducing apoptosis and promoted cell cycle arrest in the S phase. Furthermore, they showed relatively lower cytotoxicity against the human liver cell line HL-7702. The different spatial configurations of the complexes is close related with the selective binding of the isomeric complexes with serum albumin, which provide insight into the potential applications of the nitrosyl ruthenium complexes.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China; Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Yuhua Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Shuxiang Jiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Tao Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Ai Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Leilei Xie
- Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yanhong Liu
- Techinical Institute of Physics & Chemistry, CAS, Beijing, 100190, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
5
|
Chen H, Lee G, Chien S, Lee C. Light‐induced
NO
release from iron‐nitrosyl‐thiolato complex: The role of noncovalent thiol/thioether. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Huai‐Cheng Chen
- Department of Applied Science National Taitung University Taitung Taiwan
| | - Gene‐Hsiang Lee
- Instrumentation Center National Taiwan University Taipei Taiwan
| | - Su‐Ying Chien
- Instrumentation Center National Taiwan University Taipei Taiwan
| | - Chien‐Ming Lee
- Department of Applied Science National Taitung University Taitung Taiwan
| |
Collapse
|
6
|
Chiang CK, Liu YC, Chu KT, Chen JT, Tsai CY, Lee GH, Chiang MH, Lee CM. Stable Bimetallic Fe II/{Fe(NO) 2} 9 Moiety Derived from Reductive Transformations of a Diferrous-dinitrosyl Species. Inorg Chem 2022; 61:16325-16332. [PMID: 36198195 DOI: 10.1021/acs.inorgchem.2c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A dimeric dithiolate-bridged species, [Fe(NO)(PS2)]2 (1) containing two {FeNO}7 units, can be isolated by treating [Fe(CO)2(NO)2] with PS2H2 (PS2H2 = bis(2-dimercaptophenyl)phenylphosphine). Crystallographic studies reveal the syn-configuration of NO units and the bridging thiolates in the butterfly shape of the 2Fe2S core. Addition of PPh3 to the solution of dinuclear 1 leads to the formation of mononuclear {FeNO}7 [Fe(NO)(PS2)(PPh3)] (2) that shows electrochemical responses similar to those of 1. One-electron reduction of 1 with Cp*2Co or KC8 results in the isolation of thiolate-bridged bimetallic DNIC, [(PS2)Fe(μ-PS2)Fe(NO)2]- ([3]-), confirmed by several spectroscopies including single-crystal X-ray diffraction studies. The bimetallic DNIC [3]- is a rare example obtained from the one-electron reduction of a dinuclear Fe-NO {FeNO}7 model complex. With the assistance of redox behaviors of 2, electrochemical studies imply that the reduction of 1 leads to the formation of a mononuclear {FeNO}8 [Fe(NO)(PS2)(THF)]- intermediate, which involves disproportionation or NO- transfer to yield [3]-. Based on IR data and magnetic properties, the electronic structure of [3]- can be described as a FeII/{Fe(NO)2}9 state. Isolation of the {Fe(NO)2}9 moiety coordinated by the Fe ancillary complex lends strong support to the NO scrambling behavior in the effectiveness of the activity of flavodiiron nitric oxide reductases (FNORs).
Collapse
Affiliation(s)
- Chuan-Kuei Chiang
- Department of Applied Science, National Taitung University, Taitung950, Taiwan.,Institute of Chemistry, Academia Sinica, Taipei115, Taiwan
| | - Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, Taipei115, Taiwan
| | - Kai-Ti Chu
- Institute of Chemistry, Academia Sinica, Taipei115, Taiwan
| | - Jing-Ting Chen
- Institute of Chemistry, Academia Sinica, Taipei115, Taiwan
| | - Cheng-Yeh Tsai
- Institute of Chemistry, Academia Sinica, Taipei115, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei106, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei115, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung807, Taiwan
| | - Chien-Ming Lee
- Department of Applied Science, National Taitung University, Taitung950, Taiwan
| |
Collapse
|
7
|
Near-Infrared Light-Triggered Nitric Oxide Nanogenerators for NO-Photothermal Synergistic Cancer Therapy. NANOMATERIALS 2022; 12:nano12081348. [PMID: 35458056 PMCID: PMC9029494 DOI: 10.3390/nano12081348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022]
Abstract
Cancer is still one of the major health issues faced by human beings today. Various nanomaterials have been designed to treat tumors and have made great progress. Herein, we used amino-functionalized metal organic framework (UiO-66-NH2) as superior templates and successfully synthesized the UiO-66-NH2@Aushell composite nanoparticles (UA) with high loading capacity and excellent photothermal properties through a simple and gentle method. In addition, due to the rich pore structure and excellent biocompatibility of the as-prepared composite nanoparticles, the hydrophobic NO donor BNN6 (N,N′-Di-sec-butyl-N,N′-dinitroso-1, 4-phenylenediamine) molecule was efficiently delivered. Based on the phenomenon where BNN6 molecules can decompose and release NO at high temperature, when UiO-66-NH2@Aushell-BNN6 composite nanoparticles (UA-BNN6) entered tumor cells and were irradiated by NIR, the porous gold nanoshells on the surface of composite nanoparticles induced an increase in temperature through the photothermal conversion process and promoted the decomposition of BNN6 molecules, releasing high concentration of NO, thus efficiently killing HeLa cells through the synergistic effect of NO-photothermal therapy. This effective, precise and safe treatment strategy controlled by NIR laser irradiation represents a promising alternative in the field of cancer treatment.
Collapse
|