1
|
Obeid MA, Ruano-Aldea M, Acevedo R, Schjins V, Alsaadi MM, Ferro VA. Drug delivery systems incorporating bile salts: advancements since the conception of bilosomes. Ther Deliv 2025; 16:487-500. [PMID: 40126140 PMCID: PMC12051551 DOI: 10.1080/20415990.2025.2469488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
This review explores the advancements in drug delivery systems that incorporate bile salts since bilosomes that were developed over 20 years ago. Bile salts, recognized for their unique amphiphilic properties, have emerged as versatile agents in enhancing solubility, stability, and bioavailability of various therapeutics. We discuss the innovative formulations developed, including micelles, liposomes, and nanoparticles, that leverage bile salts to facilitate targeted and sustained release. The review also highlights the mechanisms by which bile salts improve drug absorption, particularly for hydrophobic compounds, and examines the evolving regulatory landscape surrounding these systems. Furthermore, we address challenges faced in clinical translation and future directions for research, emphasizing the potential of bile salt-based systems in personalized medicine. Our evaluation highlights the significant role of bile salts in advancing drug delivery technologies and their promise for improving therapeutic outcomes.
Collapse
Affiliation(s)
- Mohammad A. Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Marta Ruano-Aldea
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Reinaldo Acevedo
- Micropore Technologies, The Wilton Centre, Redcar, Cleveland, UK
| | - Virgil Schjins
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Manal M. Alsaadi
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Mendoza Lara D, Hernández-Caballero ME, Terán JL, Ramírez JS, Carrasco-Carballo A. Anticancer Activities of Natural and Synthetic Steroids: A Review. ACS OMEGA 2025; 10:7493-7509. [PMID: 40060836 PMCID: PMC11886665 DOI: 10.1021/acsomega.4c08577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Steroids have demonstrated a wide field of research on the subject of anticancer compounds, particularly antiproliferative with cell lines, with special emphasis on the historical link between steroids and cancer and the use of in silico technologies to understand the impact of natural and synthetic steroids on cancer cells focused on finding common denominators of the type of structural changes that give antiproliferative and/or cytotoxic properties, both in control and cancer cell lines. Through this review and classification by origin and/or synthesis, it is found that steroidal saponins are highly cytotoxic, although with low selectivity against control cells, while on the part of the aglycone the presence of heteroatoms such as nitrogen and oxygen increases the antiproliferative activity, mainly via cell cycle arrest and the induction of apoptosis, mechanisms that have been partially proven, using semisynthetic derivatives, as well as bioconjugates between saponins and nitrogenous steroids with now a high cytotoxicity and selectivity against control cell lines. This gives rise to the idea that steroids as a study model for the design of anticancer agents are an excellent template with a wide field of study.
Collapse
Affiliation(s)
- Daniel
F. Mendoza Lara
- Laboratorio
de Elucidación y Síntesis en Química Orgánica,
ICUAP, BUAP, Puebla, Pue, Mexico City, México 03940
| | | | - Joel L. Terán
- Centro
de Química, ICUAP, BUAP, Puebla, Pue, Mexico
City, México 03940
| | - Jesús Sandoval Ramírez
- Laboratorio
de Síntesis y Modificación en Productos Naturales, FCQ, BUAP, Puebla,
Pue, Mexico City, México 03940
| | - Alan Carrasco-Carballo
- Laboratorio
de Elucidación y Síntesis en Química Orgánica,
ICUAP, BUAP, Puebla, Pue, Mexico City, México 03940
- CONAHCYT,
LESQO, ICUAP, BUAP, Puebla, Pue, Mexico City, México 03940
| |
Collapse
|
3
|
Tassone G, Maramai S, Paolino M, Lamponi S, Poggialini F, Dreassi E, Petricci E, Alcaro S, Pozzi C, Romeo I. Exploiting the bile acid binding protein as transporter of a Cholic Acid/Mirin bioconjugate for potential applications in liver cancer therapy. Sci Rep 2024; 14:22514. [PMID: 39341955 PMCID: PMC11439058 DOI: 10.1038/s41598-024-73636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Bioconjugation is one of the most promising strategies to improve drug delivery, especially in cancer therapy. Biomolecules such as bile acids (BAs) have been intensively explored as carriers, due to their peculiar physicochemical properties and biocompatibility. BAs trafficking is regulated by intracellular lipid-binding proteins and their transport in the liver can be studied using chicken liver Bile Acid-Binding Proteins (cL-BABPs) as a reference model. Therefore, we conceived the idea of developing a BA-conjugate with Mirin, an exonuclease inhibitor of Mre11 endowed with different anticancer activities, to direct its transport to the liver. Following computational analysis of various BAs in complex with cL-BABP, we identified cholic acid (CA) as the most promising candidate as carrier, leading to the synthesis of a novel bioconjugate named CA-M11. As predicted by computational data and confirmed by X-ray crystallographic studies, CA-M11 was able to accommodate into the binding pocket of BABP. Hence, it can enter BAs trafficking in the hepatic compartment and here release Mirin. The effect of CA-M11, evaluated in combination with varying concentrations of Doxorubicin on HepG2 cell line, demonstrated a significant increase in cell mortality compared to the use of the cytotoxic drug or Mirin alone, thus highlighting chemo-sensitizing properties. The promising results regarding plasma stability for CA-M11 validate its potential as a valuable agent or adjuvant for hepatic cancer therapy.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Samuele Maramai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Federica Poggialini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefano Alcaro
- Department of Health Science, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Isabella Romeo
- Department of Health Science, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
- Net4Science Academic Spin-Off, Università "Magna Graecia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
4
|
Ren L, Zhang Y, Wu J. Association between urinary metals and prostate-specific antigen in aging population with depression: a cross-sectional study. Front Public Health 2024; 12:1401072. [PMID: 38846601 PMCID: PMC11153824 DOI: 10.3389/fpubh.2024.1401072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Objective This study aims to investigate the impact of depression and urinary metals on Prostate-Specific Antigen (PSA). Methods Analysis was conducted on 1901 samples collected from the National Health and Nutrition Examination Survey (NHANES) database between 2001 and 2010. Analytical methods included stepwise multiple linear regression (MLR) analysis of the overall population's urinary metals and PSA relationship, analysis of urinary metals and PSA relationship in older adults and BMI subgroups, analysis of urinary metals and PSA relationship in the depressed population, and restricted cubic spline (RCS) analysis. A significance level of p < 0.05 was considered statistically significant. Results In the stepwise multiple linear regression, beryllium (Be) showed a dose-response association with PSA (third quartile: β = 0.05, 95%CI (0.02, 0.09); fourth quartile: β = 0.07, 95%CI (0.02, 0.12), p trend = 0.048). Subgroup analysis indicated that in individuals aged >60, Be at Q4 level [β = 0.09, 95%CI (0.05, 0.21)] exhibited a dose-response correlation with PSA. In the population with 25 ≤ BMI < 30, Be might more significantly elevate PSA, with Q4 level having a pronounced impact on PSA levels [β = 0.03, 95%CI (0.02, 1.27)]. In the depressed population, urinary cadmium (Cd) levels showed a significant positive dose-response relationship, with Q4 level of Cd having the maximum impact on PSA [β = 0.3, 95%CI (0.09, 0.49)]. Conclusion Individuals exposed to beryllium (Be), especially the older adults and overweight, should monitor their PSA levels. In depressed patients, cadmium (Cd) levels may further elevate PSA levels, necessitating increased monitoring of PSA levels among males.
Collapse
Affiliation(s)
- Liquan Ren
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| | - Yue Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jinyi Wu
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Li W, Zou L, Huang S, Miao H, Liu K, Geng Y, Liu Y, Wu W. The anticancer activity of bile acids in drug discovery and development. Front Pharmacol 2024; 15:1362382. [PMID: 38444942 PMCID: PMC10912613 DOI: 10.3389/fphar.2024.1362382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Bile acids (BAs) constitute essential components of cholesterol metabolites that are synthesized in the liver, stored in the gallbladder, and excreted into the intestine through the biliary system. They play a crucial role in nutrient absorption, lipid and glucose regulation, and the maintenance of metabolic homeostasis. In additional, BAs have demonstrated the ability to attenuate disease progression such as diabetes, metabolic disorders, heart disease, and respiratory ailments. Intriguingly, recent research has offered exciting evidence to unveil their potential antitumor properties against various cancer cell types including tamoxifen-resistant breast cancer, oral squamous cell carcinoma, cholangiocarcinoma, gastric cancer, colon cancer, hepatocellular carcinoma, prostate cancer, gallbladder cancer, neuroblastoma, and others. Up to date, multiple laboratories have synthesized novel BA derivatives to develop potential drug candidates. These derivatives have exhibited the capacity to induce cell death in individual cancer cell types and display promising anti-tumor activities. This review extensively elucidates the anticancer activity of natural BAs and synthetic derivatives in cancer cells, their associated signaling pathways, and therapeutic strategies. Understanding of BAs and their derivatives activities and action mechanisms will evidently assist anticancer drug discovery and devise novel treatment.
Collapse
Affiliation(s)
- Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Shuai Huang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijie Miao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
6
|
Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, Duttaroy AK, Paul S. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives. Front Bioeng Biotechnol 2023; 11:1208547. [PMID: 37576994 PMCID: PMC10416113 DOI: 10.3389/fbioe.2023.1208547] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.
Collapse
Affiliation(s)
| | | | - Alma L. Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| |
Collapse
|