1
|
Garzo E, Álvarez AJ, Moreno A, Walker GP, Tjallingii WF, Fereres A. Novel program for automatic calculation of EPG variables. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:28. [PMID: 38942050 PMCID: PMC11212364 DOI: 10.1093/jisesa/ieae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024]
Abstract
The electrical penetration graph (EPG) technique is the most powerful tool for studying the feeding behavior of pierce-sucking insects. However, calculating EPG variables is often very time-consuming, and consequently, several software programs have been developed for the automatic calculation of EPG variables. Here we present a new user-friendly Excel Workbook that uses a standardized list of EPG variables and follows expert guidelines for calculating them. The program developed in Visual Basic for Applications (VBA) is a step up from the existing software and allows easy data analysis and interpretation. It also includes a novel option for dealing with the common problem of "truncated"-waveforms artificially terminated by the end of recording. The only requirement to run the program is Microsoft Excel software running under a PC environment. The Workbook was validated by calculating variables from EPG recordings of aphids and psyllids and the results obtained were compared with those of existing software such as the Sarria Workbook. Our EPG Workbook provides researchers with a reliable and standardized tool for the automatic calculation of up to 127 EPG variables from phloem-sap-sucking insects.
Collapse
Affiliation(s)
- Elisa Garzo
- Departamento de Protección de Cultivos, Instituto de Ciencias Agrarias, CSIC, Madrid, Spain
| | | | - Aránzazu Moreno
- Departamento de Protección de Cultivos, Instituto de Ciencias Agrarias, CSIC, Madrid, Spain
| | - Gregory P Walker
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | - Alberto Fereres
- Departamento de Protección de Cultivos, Instituto de Ciencias Agrarias, CSIC, Madrid, Spain
| |
Collapse
|
2
|
Roddee J, Wangkeeree J, Backus EA, Hanboonsong Y. Probing behavior of the leafhopper analyzed through DC electropenetrography and microscopy. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104584. [PMID: 37977343 DOI: 10.1016/j.jinsphys.2023.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/14/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Yamatotettix flavovittatus Matsumara is a new leafhopper species vector of sugarcane white leaf (SCWL) phytoplasma that causes sugarcane chlorosis symptoms. The effects of probing behavior of Y. flavovittatus on sugarcane and its implication for SCWL phytoplasma transmission are yet to be studied. In this research, we used DC electropenetrography (EPG) to define waveforms produced by adult and fifth-instar nymphal Y. flavovittatus on sugarcane and correlated them with salivary sheath termini (likely stylet tip locations) via light and scanning electron microscopy. The following six waveforms and associated activities are described: (NP) non-probing, (Yf1) stylet probing into epidermal cells, (Yf2) stylet probing through mesophyll/parenchyma, (Yf3) stylet contact with phloem and likely watery salivation, (Yf4) active ingestion of sap from phloem, probably sieve elements, and (Yf5) unknown stylet activity in multiple cell types. Study findings reveal that the Y. flavovittatus vector ingests sieve tube element more frequently and for longer durations than any other cell type, supporting that Y. flavovittatus is primarily a phloem feeder. Adult Y. flavovittatus show a longer total probing duration and produces a high density of puncture holes on sugarcane leaves. Moreover, probing behaviors revealed that adults typically ingest phloem sap more frequently and for longer durations than fifth-instar nymphs, enhancing sap ingestion. Furthermore, we propose that adults are more likely to acquire (during Yf4) and inoculate (during Yf3) higher amounts of phytoplasma than fifth-instar nymphs. This information on the penetration behavior of leafhopper Y. flavovittatus serves as a basis for advanced studies on the transmission mechanism of SCWL phytoplasma.
Collapse
Affiliation(s)
- Jariya Roddee
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, 30000, Nakhon Ratchasima, Thailand.
| | - Jureemart Wangkeeree
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University Rangsit Centre, Khlong Nueng, Klong Luang, 10200, Pathum Thani, Thailand
| | - Elaine A Backus
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, 93648-9757, CA, USA
| | - Yupa Hanboonsong
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Nai Muang, Muang, 40002, Khon Kaen, Thailand
| |
Collapse
|
3
|
Pfrieme AK, Will T, Pillen K, Stahl A. The Past, Present, and Future of Wheat Dwarf Virus Management-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3633. [PMID: 37896096 PMCID: PMC10609771 DOI: 10.3390/plants12203633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Wheat dwarf disease (WDD) is an important disease of monocotyledonous species, including economically important cereals. The causative pathogen, wheat dwarf virus (WDV), is persistently transmitted mainly by the leafhopper Psammotettix alienus and can lead to high yield losses. Due to climate change, the periods of vector activity increased, and the vectors have spread to new habitats, leading to an increased importance of WDV in large parts of Europe. In the light of integrated pest management, cultivation practices and the use of resistant/tolerant host plants are currently the only effective methods to control WDV. However, knowledge of the pathosystem and epidemiology of WDD is limited, and the few known sources of genetic tolerance indicate that further research is needed. Considering the economic importance of WDD and its likely increasing relevance in the coming decades, this study provides a comprehensive compilation of knowledge on the most important aspects with information on the causal virus, its vector, symptoms, host range, and control strategies. In addition, the current status of genetic and breeding efforts to control and manage this disease in wheat will be discussed, as this is crucial to effectively manage the disease under changing environmental conditions and minimize impending yield losses.
Collapse
Affiliation(s)
- Anne-Kathrin Pfrieme
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Science, Plant Breeding, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany;
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| |
Collapse
|
4
|
Dancewicz K, Gabryś B, Morkunas I, Samardakiewicz S. Probing behavior of Adelges laricis Vallot (Hemiptera: Adelgidae) on Larix decidua Mill: Description and analysis of EPG waveforms. PLoS One 2021; 16:e0251663. [PMID: 34003844 PMCID: PMC8130970 DOI: 10.1371/journal.pone.0251663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 01/10/2023] Open
Abstract
Adelgidae are a sister group of Aphididae and Phylloxeridae within Hemiptera, Aphidoidea and occur exclusively on Pinaceae. The piercing-sucking mouthparts of Adelgidae are similar to those of aphids and it is believed that adelgids ingest sap from both the non-vascular and vascular (phloem) tissues. The aim of the present study was to identify and characterize the adelgid stylet activities during their penetration in plant tissues. The probing behavior of Adelges laricis Vallot (Hemiptera: Adelgidae) on European larch Larix decidua Mill. and sucrose diets was monitored using the DC-EPG (Electrical Penetration Graph technique = electropenetrography). The EPG waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces, and associated with putative behavioral activities based on analogy with aphid activities. Waveform frequency, duration, and sequence were analysed as well. A. laricis generated EPG signals at two clearly distinct voltage levels positive and negative, suggesting extracellular and intracellular stylet penetration, respectively. The adelgid EPG patterns were ascribed to four behavioral phases, which were non-probing, pathway, phloem, and xylem phases. Non-probing referred to the position of the stylets outside the plant tissues. Pathway phase was represented by three waveform patterns that visualized extracellular stylet penetration in non-vascular tissues without potential drops (AC1), with serial short (1.2–1.5 s) potential drops (AC2), and with ‘aphid-like’ (5–10 s) potential drops (AC3). Phloem phase comprised three waveform patterns at intracellular level, which in all probability represented phloem salivation (AE1), and phloem sap passive (AE2) and active ingestion (AE3). AE3 was a newly described waveform, previously unreported from Hemiptera. Waveform AG represented the ingestion of xylem sap. The comparative analysis demonstrated that the gymnosperm-associated adelgids show certain similarities in probing behavior typical of aphids and phylloxerids on angiosperm plants. The present work is the first detailed analysis of specific adelgid stylet activities on gymnosperms.
Collapse
Affiliation(s)
- Katarzyna Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
- * E-mail:
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
D'Ambrosio DA, Kennedy GG, Huseth AS. Feeding behavior of Frankliniella fusca on seedling cotton expressing Cry51Aa2.834_16 Bt toxin. PEST MANAGEMENT SCIENCE 2020; 76:2781-2786. [PMID: 32216033 DOI: 10.1002/ps.5825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Tobacco thrips, Frankliniella fusca (Hinds), is a pest of cotton. Currently, growers rely on neonicotinoid seed treatments to control F. fusca. However, the occurrence of neonicotinoid-resistant F. fusca populations has created new challenges for their management. Development of thrips-active Cry51Aa2.834_16 Bacillus thuringiensis (Bt) toxin expressed in MON 88702 cotton will be an important new tactic for thrips management. Previous studies have shown that MON 88702 causes limited mortality of F. fusca adults and larvae but reduces infestations on seedling cotton by suppressing oviposition from colonizing adults. This suggests that the toxin affects host preference of adult F. fusca. Knowledge of the effect of this trait on F. fusca feeding behavior provides a more complete understanding of MON 88702 activity. Using electropenetrography, we compared the feeding behaviors of adult F. fusca females on MON 88702 cotton and a non-Bt isoline cotton over 2 h. The number of probes, proportion of probes resulting in ingestion, total duration of ingestion, and duration of ingestion per event were measured. RESULTS On MON 88702 seedlings, F. fusca probed and ingested fewer times than those on non-Bt cotton. Probes on MON 88702 were less likely to lead to ingestion than on non-Bt cotton. The total duration of ingestion and duration of ingestion per event did not differ between treatments. CONCLUSION The results show that MON 88702 has an antifeedant effect on F. fusca, which provides insight into behavioral responses driving MON 88702 aversion and anti-oviposition documented in previous studies. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Damon A D'Ambrosio
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Anders S Huseth
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Koch KG, Palmer NA, Donze-Reiner T, Scully ED, Seravalli J, Amundsen K, Twigg P, Louis J, Bradshaw JD, Heng-Moss TM, Sarath G. Aphid-Responsive Defense Networks in Hybrid Switchgrass. FRONTIERS IN PLANT SCIENCE 2020; 11:1145. [PMID: 32849703 PMCID: PMC7412557 DOI: 10.3389/fpls.2020.01145] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 05/30/2023]
Abstract
Aphid herbivory elicits plant defense-related networks that are influenced by host genetics. Plants of the upland switchgrass (Panicum virgatum) cultivar Summer can be a suitable host for greenbug aphids (Schizaphis graminum; GB), and yellow sugarcane aphids (Sipha flava, YSA), whereas the lowland cultivar Kanlow exhibited multi-species resistance that curtails aphid reproduction. However, stabilized hybrids of Summer (♀) x Kanlow (♂) (SxK) with improved agronomics can be damaged by both aphids. Here, hormone and metabolite analyses, coupled with RNA-Seq analysis of plant transcriptomes, were utilized to delineate defense networks induced by aphid feeding in SxK switchgrass and pinpoint plant transcription factors (TFs), such as WRKYs that potentially regulate these responses. Abscisic acid (ABA) levels were significantly higher in GB infested plants at 5 and 10 days after infestation (DAI). ABA levels were highest at 15DAI in YSA infested plants. Jasmonic acid levels were significantly elevated under GB infestation, while salicylic acid levels were signifi40cantly elevated only at 15 DAI in YSA infested plants. Similarly, levels of several metabolites were altered in common or specifically to each aphid. YSA infestation induced a significant enrichment of flavonoids consistent with an upregulation of many genes associated with flavonoid biosynthesis at 15DAI. Gene co-expression modules that responded singly to either aphid or in common to both aphids were differentiated and linked to specific TFs. Together, these data provide important clues into the interplay of metabolism and transcriptional remodeling accompanying defense responses to aphid herbivory in hybrid switchgrass.
Collapse
Affiliation(s)
- Kyle G. Koch
- Department of Entomology, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Teresa Donze-Reiner
- Biology Department, West Chester University of Pennsylvania, West Chester, PA, United States
| | - Erin D. Scully
- Stored Product Insect and Engineering Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Javier Seravalli
- Redox Biology Center, Department of Biochemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Paul Twigg
- Biology Department, University of Nebraska at Kearney, Kearney, NE, United States
| | - Joe Louis
- Department of Entomology, University of Nebraska at Lincoln, Lincoln, NE, United States
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska at Lincoln, Lincoln, NE, United States
| | | | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska at Lincoln, Lincoln, NE, United States
| |
Collapse
|
7
|
The Probing Behavior Component of Disease Transmission in Insect-Transmitted Bacterial Plant Pathogens. INSECTS 2019; 10:insects10070212. [PMID: 31331012 PMCID: PMC6681269 DOI: 10.3390/insects10070212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
Insects can be effective vectors of plant diseases and this may result in billions of dollars in lost agricultural productivity. New, emerging or introduced diseases will continue to cause extensive damage in afflicted areas. Understanding how the vector acquires the pathogen and inoculates new hosts is critical in developing effective management strategies. Management may be an insecticide applied to kill the vector or a host plant resistance mechanism to make the host plant less suitable for the vector. In either case, the tactic must act before the insect performs the key behavior(s) resulting in either acquisition or transmission. This requires knowledge of the timing of behaviors the insect uses to probe the plant and commence ingestion. These behaviors are visualized using electropenetrography (EPG), wherein the plant and insect become part of an electrical circuit. With the tools to define specific steps in the probing process, we can understand the timing of acquisition and inoculation. With that understanding comes the potential for more relevant testing of management strategies, through insecticides or host plant resistance. The primary example will be Candidatus Liberibacter asiaticus transmitted by Diaphorina citri Kuwayama in the citrus agroecosystem, with additional examples used as appropriate.
Collapse
|
8
|
Jongsma MA, Thoen MPM, Poleij LM, Wiegers GL, Goedhart PW, Dicke M, Noldus LPJJ, Kruisselbrink JW. An Integrated System for the Automated Recording and Analysis of Insect Behavior in T-maze Arrays. FRONTIERS IN PLANT SCIENCE 2019; 10:20. [PMID: 30761167 PMCID: PMC6361829 DOI: 10.3389/fpls.2019.00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/08/2019] [Indexed: 05/11/2023]
Abstract
Host-plant resistance to insects like thrips and aphids is a complex trait that is difficult to phenotype quickly and reliably. Here, we introduce novel hardware and software to facilitate insect choice assays and automate the acquisition and analysis of movement tracks. The hardware consists of an array of individual T-mazes allowing simultaneous release of up to 90 insect individuals from their individual cage below each T-maze with choice of two leaf disks under a video camera. Insect movement tracks are acquired with computer vision software (EthoVision) and analyzed with EthoAnalysis, a novel software package that allows for automated reporting of highly detailed behavior parameters and statistical analysis. To validate the benefits of the system we contrasted two Arabidopsis accessions that were previously analyzed for differential resistance to western flower thrips. Results of two trials with 40 T-mazes are reported and we show how we arrived at optimized settings for the different filters and statistics. The statistics are reported in terms of frequency, duration, distance and speed of behavior events, both as sum totals and event averages, and both for the total trial period and in time bins of 1 h. Also included are higher level analyses with subcategories like short-medium-long events and slow-medium-fast events. The time bins showed how some behavior elements are more descriptive of differences between the genotypes during the first hours, whereas others are constant or become more relevant at the end of an 8 h recording. The three overarching behavior categories, i.e., choice, movement, and halting, were automatically corrected for the percentage of time thrips were detected and 24 out of 38 statistics of behavior parameters differed by a factor 2-6 between the accessions. The analysis resulted in much larger contrasts in behavior traits than reported previously. Compared to leaf damage assays on whole plants or detached leaves that take a week or more to complete, results were obtained in 8 h, with more detail, fewer individuals and higher significance. The potential value of the new integrated system, named EntoLab, for discovery of genetic traits in plants and insects by high throughput screening of large populations is discussed.
Collapse
Affiliation(s)
- Maarten A. Jongsma
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Manus P. M. Thoen
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands
| | - Leo M. Poleij
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Gerrie L. Wiegers
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Paul W. Goedhart
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands
| | | | | |
Collapse
|
9
|
Steenbergen M, Abd-El-Haliem A, Bleeker P, Dicke M, Escobar-Bravo R, Cheng G, Haring MA, Kant MR, Kappers I, Klinkhamer PGL, Leiss KA, Legarrea S, Macel M, Mouden S, Pieterse CMJ, Sarde SJ, Schuurink RC, De Vos M, Van Wees SCM, Broekgaarden C. Thrips advisor: exploiting thrips-induced defences to combat pests on crops. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1837-1848. [PMID: 29490080 DOI: 10.1093/jxb/ery060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants have developed diverse defence mechanisms to ward off herbivorous pests. However, agriculture still faces estimated crop yield losses ranging from 25% to 40% annually. These losses arise not only because of direct feeding damage, but also because many pests serve as vectors of plant viruses. Herbivorous thrips (Thysanoptera) are important pests of vegetable and ornamental crops worldwide, and encompass virtually all general problems of pests: they are highly polyphagous, hard to control because of their complex lifestyle, and they are vectors of destructive viruses. Currently, control management of thrips mainly relies on the use of chemical pesticides. However, thrips rapidly develop resistance to these pesticides. With the rising demand for more sustainable, safer, and healthier food production systems, we urgently need to pinpoint the gaps in knowledge of plant defences against thrips to enable the future development of novel control methods. In this review, we summarize the current, rather scarce, knowledge of thrips-induced plant responses and the role of phytohormonal signalling and chemical defences in these responses. We describe concrete opportunities for breeding resistance against pests such as thrips as a prototype approach for next-generation resistance breeding.
Collapse
Affiliation(s)
- Merel Steenbergen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, , TB Utrecht, The Netherlands
| | - Ahmed Abd-El-Haliem
- Department of Plant Physiology, University of Amsterdam, Science Park, XH Amsterdam, The Netherlands
| | - Petra Bleeker
- Department of Plant Physiology, University of Amsterdam, Science Park, XH Amsterdam, The Netherlands
- Enza Zaden BV, AA Enkhuizen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Rocio Escobar-Bravo
- Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gang Cheng
- Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Michel A Haring
- Department of Plant Physiology, University of Amsterdam, Science Park, XH Amsterdam, The Netherlands
| | - Merijn R Kant
- Molecular & Chemical Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, GE Amsterdam, The Netherlands
| | - Iris Kappers
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Peter G L Klinkhamer
- Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Kirsten A Leiss
- Wageningen UR Greenhouse Horticulture, Bleiswijk, The Netherlands
| | - Saioa Legarrea
- Molecular & Chemical Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, GE Amsterdam, The Netherlands
| | - Mirka Macel
- Molecular Interactions Ecology, Radboud University, NL Nijmegen, The Netherlands
| | - Sanae Mouden
- Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, , TB Utrecht, The Netherlands
| | - Sandeep J Sarde
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, University of Amsterdam, Science Park, XH Amsterdam, The Netherlands
| | | | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, , TB Utrecht, The Netherlands
| | - Colette Broekgaarden
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, , TB Utrecht, The Netherlands
| |
Collapse
|
10
|
Backus EA, Cervantes FA, Godfrey L, Akbar W, Clark TL, Rojas MG. Certain applied electrical signals during EPG cause negative effects on stylet probing behaviors by adult Lygus lineolaris (Hemiptera: Miridae). JOURNAL OF INSECT PHYSIOLOGY 2018; 105:64-75. [PMID: 29291390 DOI: 10.1016/j.jinsphys.2017.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/12/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
This study is the first to fully evaluate whether electrical signals applied to large insects during electropenetrography (EPG; also called electrical penetration graph) negatively affect insect behavior. During EPG, electrical signals are applied to plants, and thus to the gold-wire-tethered insects feeding on them. The insect completes an electrical circuit whose changes in voltage reflect the insect's stylet probing/penetration behaviors, recorded as waveform output. For nearly 50 years of EPG science, evidence has supported that there are no or negligible effects on tiny insects from applied electricity during EPG. Recently however, EPG studies of large-bodied hemipterans such as heteropterans and sharpshooter leafhoppers have been published. The wider stylet diameters of such large insects cause them to have lower inherent resistances to applied signals compared with smaller insects, conveying more electrical current. The present study asked whether such increased currents would affect insect stylet probing, by comparing Lygus lineolaris behaviors on pin-head cotton squares using an AC-DC electropenetrograph. Effects of AC or DC applied signals were separately examined in two factorial studies, each comparing four input resistor (Ri) levels (106, 107, 108 and 109 Ω) and four applied voltage levels (2, 60, 150 and 250 mV). Results showed that changes in both probing and non-probing behaviors were indeed caused by changing signal type, Ri level, or applied voltage. Negative effects on feeding were numerically greater overall for DC than AC applied signals, perhaps due to muscular tetany from DC; however, AC versus DC could not be statistically tested. Results strongly support the need for flexible Ri and applied voltage levels and types, to tailor instrument settings to the size and special needs of each insect subject. Our findings will facilitate further EPG studies of Lygus spp., such as host plant resistance or insecticidal assays/bioassays to assess mode of action and appropriate dosage. It is hoped that this study will also inform EPG studies of similar, large heteropterans in the future.
Collapse
Affiliation(s)
- Elaine A Backus
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 So. Riverbend Ave., Parlier, CA 93648-9757, United States.
| | - Felix A Cervantes
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 So. Riverbend Ave., Parlier, CA 93648-9757, United States.
| | - Larry Godfrey
- University of California, Davis, Department of Entomology and Nematology, Davis, CA 95616, United States
| | - Waseem Akbar
- Monsanto Company, 800 North Lindbergh Blvd., St. Louis, MO 63167, United States.
| | - Thomas L Clark
- Monsanto Company, 800 North Lindbergh Blvd., St. Louis, MO 63167, United States.
| | - Maria G Rojas
- USDA Agricultural Research Service, Jamie Whitten Delta States Research Center, 59 Lee Road, Stoneville, MS 38776-0067, United States.
| |
Collapse
|
11
|
Roddee J, Kobori Y, Yorozuya H, Hanboonsong Y. Characterization of Direct Current-Electrical Penetration Graph Waveforms and Correlation With the Probing Behavior of Matsumuratettix hiroglyphicus (Hemiptera: Cicadellidae), the Insect Vector of Sugarcane White Leaf Phytoplasma. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:893-902. [PMID: 28334303 DOI: 10.1093/jee/tox090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Indexed: 06/06/2023]
Abstract
The leafhopper Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae) is an important vector of phytoplasma causing white leaf disease in sugarcane. Thus, the aim of our study was to understand and describe the stylet-probing activities of this vector while feeding on sugarcane plants, by using direct current (DC) electrical penetration graph (EPG) monitoring. The EPG signals were classified into six distinct waveforms, according to amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration into the host plant tissues (probing). These six EPG waveforms of probing behavior comprise no stylet penetration (NP); stylet pathway through epidermis, mesophyll, and parenchymal cells (waveform A); contact at the bundle sheath layer (waveform B); salivation into phloem sieve elements (waveform C); phloem sap ingestion (waveform D); and short ingestion time of xylem sap (waveform E). The above waveform patterns were correlated with histological data of salivary sheath termini in plant tissue generated from insect stylet tips. The key findings of this study were that M. hiroglyphicus ingests the phloem sap at a relatively higher rate and for longer duration from any other cell type, suggesting that M. hiroglyphicus is mainly a phloem-feeder. Quantitative comparison of probing behavior revealed that females typically probe more frequently and longer in the phloem than males. Thus, females may acquire and inoculate greater amounts of phytoplasma than males, enhancing the efficiency of phytoplasma transmission and potentially exacerbating disease spreading. Overall, our study provides basic information on the probing behavior and transmission mechanism of M. hiroglyphicus.
Collapse
Affiliation(s)
- J Roddee
- Division of Entomology, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand (; )
| | - Y Kobori
- Japan International Research Center for Agricultural Sciences, Tropical Agriculture Research Front, 1091-1, Maezato-Kawarabaru, Ishigaki, Okinawa 907-0002, Japan
| | - H Yorozuya
- Institute of Fruit Tree and Tea Science, NARO, Kagoshima 898-0087, Japan
| | - Y Hanboonsong
- Division of Entomology, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand ( ; )
- Corresponding author, e-mail:
| |
Collapse
|
12
|
Civolani S, Leis M, Grandi G, Garzo E, Pasqualini E, Musacchi S, Chicca M, Castaldelli G, Rossi R, Tjallingii WF. Stylet penetration of Cacopsylla pyri; an electrical penetration graph (EPG) study. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1407-1419. [PMID: 21802423 DOI: 10.1016/j.jinsphys.2011.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 05/31/2023]
Abstract
Detailed information on plant penetration activities by pear psylla Cacopsylla pyri L. (Hemiptera Psyllidae) is essential to study phytoplasma transmission of "Candidatus Phytoplasma pyri" responsible of pear decline disease (PD) and to trace and evaluate resistant traits in new pear tree selections for advanced breeding programs. The electrical penetration graph technique or (full) EPG may relevantly contribute to this knowledge. C. pyri EPG waveforms were characterized on basis of amplitude, frequency, voltage level, and electrical origin. Additionally, stylet tracks and the putative location of stylet tips in the plant tissue were histologically related to EPG waveforms by light and transmission electron microscopy observations after stylectomy. More than one waveform occurred in the same tissue: PA, PB, PC1 and PC2 were all detected in the mesophyll, and PE1 and PE2 were both recorded in the phloem. Waveform PE1 was always preceded by transient waveform PD, as previously described in other psyllids. Interestingly, no brief intracellular punctures (potential drop waveforms) were observed during plant penetration, opposite of what is usually recorded in aphids and other Sternorrhyncha.
Collapse
Affiliation(s)
- Stefano Civolani
- Department of Biology and Evolution, University of Ferrara, via L. Borsari 46, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Backus EA, Bennett WH. The AC-DC correlation monitor: New EPG design with flexible input resistors to detect both R and emf components for any piercing-sucking hemipteran. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:869-84. [PMID: 19482032 DOI: 10.1016/j.jinsphys.2009.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/19/2009] [Accepted: 05/19/2009] [Indexed: 05/12/2023]
Abstract
Much of what is known today about hemipteran feeding biology, as well as mechanisms of their host plant interactions and transmission of phytopathogens, has been learned via use of electrical penetration graph (EPG) technology, originally called electronic monitoring of insect feeding. Key to all of this information has been the electronic designs of EPG monitors. It has been 45 years since the publication of the original EPG, the AC monitor, and 30 years since introduction of the DC monitor, an important improvement for EPG science. Herein we describe our new AC-DC Correlation Monitor, the first major improvement in design since the DC monitor. We provide the monitor's block diagram and circuit description, and discuss (as a first example) its application to aphid feeding waveforms. Our instrument combines design features from the existing AC Missouri monitor and the DC Tjallingii monitor, plus several new innovations. It can produce three simultaneous, time-synchronized, output signals from a single insect, via AC and DC signal processing circuitry, as well as using either AC, DC, AC-plus-DC, or 0V substrate voltage. Our research conclusively demonstrates that AC signal processing can be designed to duplicate the level of detail and fidelity of aphid waveforms previously provided solely by the DC monitor, including all R- and emf-component waveforms. Availability of either AC or DC applied voltages will allow similar high-resolution recording of insects that appear to be sensitive to DC applied voltages. We also begin to determine the subtle reasons why published waveforms from older AC and DC monitors appear to differ so greatly. Our instrument is a single, flexible, universal monitor that can provide maximum, R-plus-emf waveform information from any piercing-sucking species, especially non-aphid species with sensitivity to DC applied voltage.
Collapse
Affiliation(s)
- Elaine A Backus
- USDA Agricultural Research Service, San Joaquin Valley Agric. Sciences Ctr., Parlier, CA 93648, USA.
| | | |
Collapse
|