1
|
Mactaggart M, Whitaker AP, Wilkinson KN, Hall MJR. Novel use of a servosphere to study apodous insects: Investigation of blow fly post-feeding larval dispersal. MEDICAL AND VETERINARY ENTOMOLOGY 2025; 39:14-21. [PMID: 39044406 PMCID: PMC11793127 DOI: 10.1111/mve.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Blow flies (Diptera: Calliphoridae) are arguably the most important providers of an estimate of minimum post-mortem interval in forensic investigations. They usually undergo a post-feeding dispersal from the body. While previous studies have looked at dispersal of groups of larvae, recording the dispersal activity of individual larvae has not previously been demonstrated. A servosphere was used here to record the speed, directionality and phototaxis of individual post-feeding larvae of two species of blow fly on a smooth plastic surface over time. The servosphere rotates to compensate for the movement of an insect placed at its apex, thereby enabling its unimpeded locomotion in any direction to be studied and behavioural changes to external stimuli recorded. To our knowledge, the servosphere has not previously been used to study apodous insects. The objective of our study was to compare dispersal behaviour of Calliphora vicina Robineau-Desvoidy and Protophormia terraenovae (Robineau-Desvoidy), both common primary colonisers of human and animal cadavers, but showing different post-feeding dispersal strategies. Larvae of C. vicina generally disperse from the body while those of P. terraenovae remain on or close to the body. Our aims were to study (1) changes in dispersal speed over a 1-h period; (2) changes in dispersal speed once a day for 4 days, between the end of feeding and onset of pupariation; and (3) response of dispersing larvae to light. We demonstrated that (1) the movement of three C. vicina larvae tracked for 1 continuous hour on 1 day slowed from an average of 3 to <1.7 mms-1; (2) the average speed of 20 larvae of C. vicina (4.08 mms-1) recorded for 5 min once per day over a 4-day period between onset of dispersal and pupariation was significantly greater than that of P. terraenovae (2.36 mms-1; p < 0.0001), but that speed of both species increased slightly over the 4 days; (3) the responses of larvae of C. vicina to changes in light direction from the four cardinal directions of the compass, showed that they exhibited a strong negative phototactic response within 5 s, turning to move at approximately 180° away from the new light position. While conducted to observe larval calliphorid post-feeding behaviour, the results of this proof of concept study show that apodous insects can be studied on a servosphere to produce both qualitative and quantitative data.
Collapse
Affiliation(s)
- Molly Mactaggart
- Faculty of Law, Crime and JusticeUniversity of WinchesterWinchesterUK
- Natural History MuseumLondonUK
| | - Amoret P. Whitaker
- Faculty of Law, Crime and JusticeUniversity of WinchesterWinchesterUK
- Natural History MuseumLondonUK
| | | | | |
Collapse
|
2
|
Hirata K, Shiga S. Bolwig Organ and Its Role in the Photoperiodic Response of Sarcophaga similis Larvae. INSECTS 2023; 14:115. [PMID: 36835683 PMCID: PMC9959995 DOI: 10.3390/insects14020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Flesh-fly Sarcophaga similis larvae exhibit a photoperiodic response, in which short days induce pupal diapause for seasonal adaptation. Although the spectral sensitivity of photoperiodic photoreception is known, the photoreceptor organ remains unclear. We morphologically identified the Bolwig organ, a larval-photoreceptor identified in several other fly species, and examined the effects of its removal on the photoperiodic response in S. similis. Backfill-staining and embryonic-lethal-abnormal-vision (ELAV) immunohistochemical-staining identified ~34 and 38 cells, respectively, in a spherical body at the ocular depression of the cephalopharyngeal skeleton, suggesting that the spherical body is the Bolwig organ in S. similis. Forward-fill and immunohistochemistry revealed that Bolwig-organ neurons terminate in the vicinity of the dendritic fibres of pigment-dispersing factor-immunoreactive and potential circadian-clock neurons in the brain. After surgical removal of the Bolwig-organ regions, diapause incidence was not significantly different between short and long days, and was similar to that in the insects with an intact organ, under constant darkness. However, diapause incidence was not significantly different between the control and Bolwig-organ-removed insects for each photoperiod. These results suggest that the Bolwig organ contributes partially to photoperiodic photoreception, and that other photoreceptors may also be involved.
Collapse
Affiliation(s)
- Kazuné Hirata
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
- Center for Ecological Research, Kyoto University, Otsu 520-2133, Shiga, Japan
| | - Sakiko Shiga
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
3
|
Humberg TH, Bruegger P, Afonso B, Zlatic M, Truman JW, Gershow M, Samuel A, Sprecher SG. Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues. Nat Commun 2018; 9:1260. [PMID: 29593252 PMCID: PMC5871836 DOI: 10.1038/s41467-018-03520-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/21/2018] [Indexed: 11/09/2022] Open
Abstract
To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.
Collapse
Affiliation(s)
| | - Pascal Bruegger
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Bruno Afonso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA.,Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, UK
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, VA, USA
| | - Marc Gershow
- Department of Physics and Center for Neural Science, New York University, New York, 10003, NY, USA
| | - Aravinthan Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, 02138, MA, USA
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
4
|
Humberg TH, Sprecher SG. Age- and Wavelength-Dependency of Drosophila Larval Phototaxis and Behavioral Responses to Natural Lighting Conditions. Front Behav Neurosci 2017; 11:66. [PMID: 28473759 PMCID: PMC5397426 DOI: 10.3389/fnbeh.2017.00066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Animals use various environmental cues as key determinant for their behavioral decisions. Visual systems are hereby responsible to translate light-dependent stimuli into neuronal encoded information. Even though the larval eyes of the fruit fly Drosophila melanogaster are comparably simple, they comprise two types of photoreceptor neurons (PRs), defined by different Rhodopsin genes expressed. Recent findings support that for light avoidance Rhodopsin5 (Rh5) expressing photoreceptors are crucial, while Rhodopsin6 (Rh6) expressing photoreceptors are dispensable under laboratory conditions. However, it remains debated how animals change light preference during larval live. We show that larval negative phototaxis is age-independent as it persists in larvae from foraging to wandering developmental stages. Moreover, if spectrally different Rhodopsins are employed for the detection of different wavelength of light remains unexplored. We found that negative phototaxis can be elicit by light with wavelengths ranging from ultraviolet (UV) to green. This behavior is uniquely mediated by Rh5 expressing photoreceptors, and therefore suggest that this photoreceptor-type is able to perceive UV up to green light. In contrast to laboratory our field experiments revealed that Drosophila larvae uses both types of photoreceptors under natural lighting conditions. All our results, demonstrate that Drosophila larval eyes mediate avoidance of light stimuli with a wide, ecological relevant range of quantity (intensities) and quality (wavelengths). Thus, the two photoreceptor-types appear more likely to play a role in different aspects of phototaxis under natural lighting conditions, rather than color discrimination.
Collapse
Affiliation(s)
| | - Simon G Sprecher
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
5
|
Boulay J, Deneubourg JL, Hédouin V, Charabidzé D. Interspecific shared collective decision-making in two forensically important species. Proc Biol Sci 2017; 283:rspb.2015.2676. [PMID: 26865296 DOI: 10.1098/rspb.2015.2676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To date, the study of collective behaviour has mainly focused on intraspecific situations: the collective decision-making of mixed-species groups involving interspecific aggregation-segregation has received little attention. Here, we show that, in both conspecific and heterospecific groups, the larvae of two species (Lucilia sericata and Calliphora vomitoria, calliphorid carrion-feeding flies) were able to make a collective choice. In all groups, the choice was made within a few minutes and persisted throughout the period of the experiment. The monitoring of a focal individual within a group showed that these aggregations were governed by attractive and retentive effects of the group. Furthermore, the similarity observed between the conspecific and heterospecific groups suggested the existence of shared aggregation signals. The group size was found to have a stronger influence than the species of necrophagous larvae. These results should be viewed in relation to the well-known correlation between group size and heat generation. This study provides the first experimental examination of the dynamics of collective decision-making in mixed-species groups of invertebrates, contributing to our understanding of the cooperation-competition phenomenon in animal social groups.
Collapse
Affiliation(s)
- Julien Boulay
- CHU Lille, Université Lille 2, EA 7367-UTML-Unité de Taphonomie Médico-Légale, Lille, France Unit of Social Ecology-CP 231, Université Libre de Bruxelles (ULB), Campus Plaine, Boulevard du Triomphe, Building NO-level 5, 1050 Bruxelles, Belgium
| | - Jean-Louis Deneubourg
- Unit of Social Ecology-CP 231, Université Libre de Bruxelles (ULB), Campus Plaine, Boulevard du Triomphe, Building NO-level 5, 1050 Bruxelles, Belgium
| | - Valéry Hédouin
- CHU Lille, Université Lille 2, EA 7367-UTML-Unité de Taphonomie Médico-Légale, Lille, France
| | - Damien Charabidzé
- CHU Lille, Université Lille 2, EA 7367-UTML-Unité de Taphonomie Médico-Légale, Lille, France
| |
Collapse
|
6
|
Interactions among Drosophila larvae before and during collision. Sci Rep 2016; 6:31564. [PMID: 27511760 PMCID: PMC4980675 DOI: 10.1038/srep31564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/19/2016] [Indexed: 01/04/2023] Open
Abstract
In populations of Drosophila larvae, both, an aggregation and a dispersal behavior can be observed. However, the mechanisms coordinating larval locomotion in respect to other animals, especially in close proximity and during/after physical contacts are currently only little understood. Here we test whether relevant information is perceived before or during larva-larva contacts, analyze its influence on behavior and ask whether larvae avoid or pursue collisions. Employing frustrated total internal reflection-based imaging (FIM) we first found that larvae visually detect other moving larvae in a narrow perceptive field and respond with characteristic escape reactions. To decipher larval locomotion not only before but also during the collision we utilized a two color FIM approach (FIM2c), which allowed to faithfully extract the posture and motion of colliding animals. We show that during collision, larval locomotion freezes and sensory information is sampled during a KISS phase (german: Kollisions Induziertes Stopp Syndrom or english: collision induced stop syndrome). Interestingly, larvae react differently to living, dead or artificial larvae, discriminate other Drosophila species and have an increased bending probability for a short period after the collision terminates. Thus, Drosophila larvae evolved means to specify behaviors in response to other larvae.
Collapse
|
7
|
Abstract
The avoidance of light by fly larvae is a classic paradigm for sensorimotor behavior. Here, we use behavioral assays and video microscopy to quantify the sensorimotor structure of phototaxis using the Drosophila larva. Larval locomotion is composed of sequences of runs (periods of forward movement) that are interrupted by abrupt turns, during which the larva pauses and sweeps its head back and forth, probing local light information to determine the direction of the successive run. All phototactic responses are mediated by the same set of sensorimotor transformations that require temporal processing of sensory inputs. Through functional imaging and genetic inactivation of specific neurons downstream of the sensory periphery, we have begun to map these sensorimotor circuits into the larval central brain. We find that specific sensorimotor pathways that govern distinct light-evoked responses begin to segregate at the first relay after the photosensory neurons.
Collapse
|
8
|
Boulay J, Devigne C, Gosset D, Charabidze D. Evidence of active aggregation behaviour in Lucilia sericata larvae and possible implication of a conspecific mark. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|