1
|
Zhang X, Hu Z, Wang S, Yin F, Wei Y, Xie J, Sun R. Discovery of 2-Naphthol from the Leaves of Actephila merrilliana as a Natural Nematicide Candidate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13209-13219. [PMID: 37643159 DOI: 10.1021/acs.jafc.3c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
To identify natural nematicides that can replace chemical nematicides, 2-naphthol with high activity against Meloidogyne incognita was isolated from Actephila merrilliana. The nematicidal activity of 2-naphthol against M. incognita was 100% at 100 μg/mL with an EC50 value of 38.00 μg/mL. Moreover, 2-naphthol had a significant negative effect on egg incubation. 2-Naphthol effectively inhibited the invasion of M. incognita into crops in both a pot experiment and field trial. In addition, the structure-activity relationship indicated that the naphthalene ring and its β-site hydroxyl group were the key pharmacophores for the nematicidal activity of 2-naphthol. Nematodes were stimulated by 2-naphthol to produce excessive reactive oxygen species, which may be the underlying mechanism of 2-naphthol nematicidal activity. A systemic evaluation of 2-naphthol in tomato plants demonstrated that 2-naphthol remained mainly fixed in the roots after being absorbed by the crop and was not transported to the stems or leaves. Thus, 2-naphthol can be developed as a natural nematicide candidate.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Shuai Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Fengman Yin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Yuyang Wei
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou 570228, People's Republic of China
| |
Collapse
|
2
|
Homareda H, Suga K, Yamamoto-Hijikata S, Eishi Y, Ushimaru M, Hara Y. β subunit affects Na+ and K+ affinities of Na+/K+-ATPase: Na+ and K+ affinities of a hybrid Na+/K+-ATPase composed of insect α and mammalian β subunits. Biochem Biophys Rep 2022; 32:101347. [PMID: 36131851 PMCID: PMC9483571 DOI: 10.1016/j.bbrep.2022.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The affinity for K+ of silkworm Na+/K+-ATPase, which is composed of α and β subunits, is remarkably lower than that of mammalian Na+/K+-ATPase, with a slightly higher affinity for Na+. Because the α subunit had more than 70% identity to the mammalian α subunit in the amino acid sequence, whereas the β subunit, a glycosylated protein, had less than 30% identity to the mammalian β subunit, it was suggested that the β subunit was involved in the affinities for Na+ and K+ of Na+/K+-ATPase. To confirm this hypothesis, we examined whether replacing the silkworm β subunit with the mammalian β subunit affected the affinities for Na+ and K+ of Na+/K+-ATPase. Cloned silkworm α and cloned rat β1 were co-expressed in BM-N cells, a cultured silkworm ovary-derived cell lacking endogenous Na+/K+-ATPase, to construct a hybrid Na+/K+-ATPase, in which the silkworm β subunit was replaced with the rat β1 subunit. The hybrid Na+/K+-ATPase increased the affinity for K+ by 4.1-fold and for Na+ by 0.65-fold compared to the wild-type one. Deglycosylation of the silkworm β subunit did not affect the K+ affinity. These results support the involvement of the β subunit in the Na+ and K+ affinities of Na+/K+-ATPase. Silkworm Na+/K+-ATPase has much lower affinity for K+ than mammalian Na+/K+-ATPase with a slightly higher affinity for Na+. Silkworm Na+/K+-ATPase β subunit has less than 30% identity to the mammalian β subunit in the amino acid sequence. Replacement of the silkworm β with the rat β increased K+ affinity and decreased Na+ affinity of Na+/K+-ATPase. β subunit is involved in Na+ and K+ affinities of Na+/K+-ATPase.
Collapse
Affiliation(s)
- Haruo Homareda
- Department of Chemistry, Faculty of Medicine, Kyorin University, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
- Corresponding author.
| | - Kei Suga
- Department of Chemistry, Faculty of Medicine, Kyorin University, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Sachiko Yamamoto-Hijikata
- Department of Chemistry, Faculty of Medicine, Kyorin University, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Makoto Ushimaru
- Department of Chemistry, Faculty of Medicine, Kyorin University, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Yukichi Hara
- Department of Chemistry, Faculty of Medicine, Kyorin University, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
3
|
Moyes CD, Dastjerdi SH, Robertson RM. Measuring enzyme activities in crude homogenates: Na +/K +-ATPase as a case study in optimizing assays. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110577. [PMID: 33609808 DOI: 10.1016/j.cbpb.2021.110577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
In this review of assays of Na+/K+-ATPase (NKA), we explore the choices made by researchers assaying the enzyme to investigate its role in physiological regulation. We survey NKA structure and function in the context of how it is typically assayed, and how technical choices influence what can be said about the enzyme. In comparing different methods for extraction and assay of NKA, we identified a series of common pitfalls that compromise the veracity of results. We include experimental work to directly demonstrate how choices in detergents, salts and substrates influence NKA activities measured in crude homogenates. Our review of assay approaches integrates what is known from enzymology, biomedical physiology, cell biology and evolutionary biology, offering a more robust method for assaying the enzyme in meaningful ways, identifying caveats and future directions to explore its structure and function. The goal is to provide the sort of background on the enzyme that should be considered in exploring the function of the enzyme in comparative physiology.
Collapse
|
4
|
Homareda H, Otsu M, Yamamoto S, Ushimaru M, Ito S, Fukutomi T, Jo T, Eishi Y, Hara Y. A possible mechanism for low affinity of silkworm Na +/K +-ATPase for K . J Bioenerg Biomembr 2017; 49:463-472. [PMID: 29047027 DOI: 10.1007/s10863-017-9729-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022]
Abstract
The affinity for K+ of silkworm nerve Na+/K+-ATPase is markedly lower than that of mammalian Na+/K+-ATPase (Homareda 2010). In order to obtain clues on the molecular basis of the difference in K+ affinities, we cloned cDNAs of silkworm (Bombyx mori) nerve Na+/K+-ATPase α and β subunits, and analyzed the deduced amino acid sequences. The molecular masses of the α and β subunits were presumed to be 111.5 kDa with ten transmembrane segments and 37.7 kDa with a single transmembrane segment, respectively. The α subunit showed 75% identity and 93% homology with the pig Na+/K+-ATPase α1 subunit. On the other hand, the amino acid identity of the β subunit with mammalian counterparts was as low as 30%. Cloned α and β cDNAs were co-expressed in cultured silkworm ovary-derived cells, BM-N cells, which lack endogenous Na+/K+-ATPase. Na+/K+-ATPase expressed in the cultured cells showed a low affinity for K+ and a high affinity for Na+, characteristic of the silkworm nerve Na+/K+-ATPase. These results suggest that the β subunit is responsible for the affinity for K+ of Na+/K+-ATPase.
Collapse
Affiliation(s)
- Haruo Homareda
- Department of Chemistry, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Masahiro Otsu
- Department of Chemistry, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Sachiko Yamamoto
- Department of Chemistry, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Makoto Ushimaru
- Department of Chemistry, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Sayaka Ito
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Nishikamata, Ota-ku, Tokyo, 144-8535, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Taeho Jo
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yoshinobu Eishi
- Department of Human Pathology, Tokyo Medical and Dental University Graduate School, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yukichi Hara
- Department of Human Pathology, Tokyo Medical and Dental University Graduate School, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
5
|
Cheng D, Feng M, Ji Y, Wu W, Hu Z. Effects of Celangulin IV and V From Celastrus angulatus Maxim on Na+/K+-ATPase Activities of the Oriental Armyworm (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew051. [PMID: 27324586 PMCID: PMC4913500 DOI: 10.1093/jisesa/iew051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/26/2016] [Indexed: 05/27/2023]
Abstract
Na(+)/K(+)-ATPase (sodium pump) is an important target for the development of botanical pesticide as it is responsible for transforming chemical energy in ATP to osmotic work and maintaining electrochemical Na(+ )and K(+ )gradients across the cell membrane of most animal cells. Celangulin IV (C-IV) and V (C-V), which are isolated from the root bark of Celastrus angulatus, are the major active ingredients of this insecticidal plant. The activities of C-IV and C-V on Na(+)/K(+)-ATPase were investigated by ultramicro measuring method to evaluate the effects of C-IV and C-V on Na(+)/K(+)-ATPase activities of the brain from the fifth Mythimna separata larvae and to discuss the insecticidal mechanism of C-IV and C-V. Results indicate that inhibitory activities of Na(+)/K(+)-ATPase by C-IV and C-V possess an obvious concentration-dependent in vitro. Compared with C-IV, the inhibition of C-V on Na(+)/K(+)-ATPase was not striking. In vivo, at a concentration of 25 mg/liter, the inhibition ratio of C-IV on Na(+)/K(+)-ATPase activity from the brain in narcosis and recovery period was more remarkable than that of C-V. Furthermore, the insects were fed with different mixture ratios of C-IV and C-V. The inhibition extent of Na(+)/K(+)-ATPase activity was corresponded with the dose of C-IV. However, C-V had no notable effects. This finding may mean that the mechanism of action of C-IV and C-V on Na(+)/K(+)-ATPase were different. Na(+)/K -ATPase may be an action target of C-IV and C-V.
Collapse
Affiliation(s)
- Dan Cheng
- College of Plant Protection, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, China (; ; ; ; ) Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Mingxing Feng
- College of Plant Protection, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, China (; ; ; ; ) Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Yufei Ji
- College of Plant Protection, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, China (; ; ; ; ) Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Wenjun Wu
- College of Plant Protection, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, China (; ; ; ; ) Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Zhaonong Hu
- College of Plant Protection, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, China (; ; ; ; ) Key Laboratory of Botanical Pesticide R & D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Hou N, Armstrong GAB, Chakraborty-Chatterjee M, Sokolowski MB, Robertson RM. Na+-K+-ATPase trafficking induced by heat shock pretreatment correlates with increased resistance to anoxia in locusts. J Neurophysiol 2014; 112:814-23. [PMID: 24848469 PMCID: PMC4122745 DOI: 10.1152/jn.00201.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/17/2014] [Indexed: 01/02/2023] Open
Abstract
The sensitivity of insect nervous systems to anoxia can be modulated genetically and pharmacologically, but the cellular mechanisms responsible are poorly understood. We examined the effect of a heat shock pretreatment (HS) on the sensitivity of the locust (Locusta migratoria) nervous system to anoxia induced by water immersion. Prior HS made locusts more resistant to anoxia by increasing the time taken to enter a coma and by reducing the time taken to recover the ability to stand. Anoxic comas were accompanied by surges of extracellular potassium ions in the neuropile of the metathoracic ganglion, and HS reduced the time taken for clearance of excess extracellular potassium ions. This could not be attributed to a decrease in the activity of protein kinase G, which was increased by HS. In homogenates of the metathoracic ganglion, HS had only a mild effect on the activity of Na(+)-K(+)-ATPase. However, we demonstrated that HS caused a threefold increase in the immunofluorescent localization of the α-subunit of Na(+)-K(+)-ATPase in metathoracic neuronal plasma membranes relative to background labeling of the nucleus. We conclude that HS induced trafficking of Na(+)-K(+)-ATPase into neuronal plasma membranes and suggest that this was at least partially responsible for the increased resistance to anoxia and the increased rate of recovery of neural function after a disturbance of K(+) homeostasis.
Collapse
Affiliation(s)
- Nicholas Hou
- Department of Biology, Queen's University, Kingston, Ontario, Canada; and
| | - Gary A B Armstrong
- Department of Biology, Queen's University, Kingston, Ontario, Canada; and
| | | | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|