1
|
Wilkinson M, López-Martínez G. The lifelong effects of anoxia hormesis in solitary bees. ENVIRONMENTAL ENTOMOLOGY 2025; 54:320-330. [PMID: 40084522 DOI: 10.1093/ee/nvaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/02/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
The stimulatory and protective response known as hormesis elicits an often over compensatory response resulting in life-history trait improvements. There are an array of abiotic and biotic agents that have been shown to trigger hormesis; most commonly studied are chemicals, temperature, and low oxygen. Investigations into low-oxygen exposures that activate the hormetic response reveal that insect performance can be dramatically improved by single short low-oxygen events, but the focus of this work has been primarily on short-term, transitory protection afforded by hormesis. Few reports examine whether the effect is longer lasting or lifelong. We previously reported that one hour of anoxia was enough to induce a hormetic response in the alfalfa leafcutting bee, Megachile rotundata (Hymenoptera: Megachilidae). Here, we investigated the long-term effects of this response by looking at starvation resistance, flight, and locomotory activity throughout the life of the adult bees. In addition, we studied the effects of anoxia hormesis on multiple reproductive metrics. Anoxia hormesis had lifelong positive effects for flight in both sexes. We also recorded higher starvation survival in bees that experienced hormesis. This improvement in performance came at a steep reproductive cost (ie reduction in fecundity). However, no costs or benefits were passed to the next generation. We hypothesize that using anoxia hormesis in the context of pollination services by this species should result in bees that are more active in the field, thereby increasing the numbers of visits to flowers throughout their entire life.
Collapse
Affiliation(s)
- Michaelyne Wilkinson
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
2
|
Wilmsen SM, Dzialowski EM. Altering developmental oxygen exposure influences thermoregulation and flight performance of Manduca sexta. J Exp Biol 2024; 227:jeb247373. [PMID: 38873724 DOI: 10.1242/jeb.247373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Endothermic, flying insects are capable of some of the highest recorded metabolic rates. This high aerobic demand is made possible by the insect's tracheal system, which supplies the flight muscles with oxygen. Many studies focus on metabolic responses to acute changes in oxygen to test the limits of the insect flight metabolic system, with some flying insects exhibiting oxygen limitation in flight metabolism. These acute studies do not account for possible changes induced by developmental phenotypic plasticity in response to chronic changes in oxygen levels. The endothermic moth Manduca sexta is a model organism that is easy to raise and exhibits a high thorax temperature during flight (∼40°C). In this study, we examined the effects of developmental oxygen exposure during the larval, pupal and adult stages on the adult moth's aerobic performance. We measured flight critical oxygen partial pressure (Pcrit-), thorax temperature and thermoregulating metabolic rate to understand the extent of developmental plasticity as well as effects of developmental oxygen levels on endothermic capacity. We found that developing in hypoxia (10% oxygen) decreased thermoregulating thorax temperature when compared with moths raised in normoxia or hyperoxia (30% oxygen), when moths were warming up in atmospheres with 21-30% oxygen. In addition, moths raised in hypoxia had lower critical oxygen levels when flying. These results suggest that chronic developmental exposure to hypoxia affects the adult metabolic phenotype and potentially has implications for thermoregulatory and flight behavior.
Collapse
Affiliation(s)
- Sara M Wilmsen
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| | - Edward M Dzialowski
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76201, USA
| |
Collapse
|
3
|
Grula CC, Rinehart JD, Anacleto A, Kittilson JD, Heidinger BJ, Greenlee KJ, Rinehart JP, Bowsher JH. Telomere length is longer following diapause in two solitary bee species. Sci Rep 2024; 14:11208. [PMID: 38755232 PMCID: PMC11099051 DOI: 10.1038/s41598-024-61613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees, Osmia lignaria and Megachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in both O. lignaria and M. rotundata. Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. In O. lignaria, telomeres were longer in adults when they emerged following diapause. In M. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adult O. lignaria were exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics.
Collapse
Affiliation(s)
- Courtney C Grula
- Insect Genetics and Biochemistry Edward T. Schafer Research Center, U.S. Department of Agriculture/Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND, 58102, USA.
| | - Joshua D Rinehart
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Angelo Anacleto
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 E. Catherine St., Ann Arbor, MI, 48109, USA
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Britt J Heidinger
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| | - Joseph P Rinehart
- Insect Genetics and Biochemistry Edward T. Schafer Research Center, U.S. Department of Agriculture/Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND, 58102, USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 218 Stevens Hall, Fargo, ND, 58102, USA
| |
Collapse
|
4
|
He L, Chen IW, Zhang Z, Zheng W, Sayadi A, Wang L, Sang W, Ji R, Lei J, Arnqvist G, Lei C, Zhu-Salzman K. In silico promoter analysis and functional validation identify CmZFH, the co-regulator of hypoxia-responsive genes CmScylla and CmLPCAT. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103681. [PMID: 34800642 DOI: 10.1016/j.ibmb.2021.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Oxygen (O2) plays an essential role in aerobic organisms including terrestrial insects. Under hypoxic stress, the cowpea bruchid (Callosobruchus maculatus) ceases feeding and growth. However, larvae, particularly 4th instar larvae exhibit very high tolerance to hypoxia and can recover normal growth once brought to normoxia. To better understand the molecular mechanism that enables insects to cope with low O2 stress, we performed RNA-seq to distinguish hypoxia-responsive genes in midguts and subsequently identified potential common cis-elements in promoters of hypoxia-induced and -repressed genes, respectively. Selected elements were subjected to gel-shift and transient transfection assays to confirm their cis-regulatory function. Of these putative common cis-elements, AREB6 appeared to regulate the expression of CmLPCAT and CmScylla, two hypoxia-induced genes. CmZFH, the putative AREB6-binding protein, was hypoxia-inducible. Transient expression of CmZFH in Drosophila S2 cells activated CmLPCAT and CmScylla, and their induction was likely through interaction of CmZFH with AREB6. Binding to AREB6 was further confirmed by bacterially expressed CmZFH recombinant protein. Deletion analyses indicated that the N-terminal zinc-finger cluster of CmZFH was the key AREB6-binding domain. Through in silico and experimental exploration, we discovered novel transcriptional regulatory components associated with gene expression dynamics under hypoxia that facilitated insect survival.
Collapse
Affiliation(s)
- Li He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Ivy W Chen
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Zan Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, 75236, Sweden
| | - Lei Wang
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Wen Sang
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Rui Ji
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, 75236, Sweden
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Walter RM, Rinehart JP, Dillon ME, Greenlee KJ. Size constrains oxygen delivery capacity within but not between bumble bee castes. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104297. [PMID: 34403656 DOI: 10.1016/j.jinsphys.2021.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Bumble bees are eusocial, with distinct worker and queen castes that vary strikingly in size and life-history. The smaller workers rely on energetically-demanding foraging flights to collect resources for rearing brood. Queens can be 3 to 4 times larger than workers, flying only for short periods in fall and again in spring after overwintering underground. These differences between castes in size and life history may be reflected in hypoxia tolerance. When oxygen demand exceeds supply, oxygen delivery to the tissues can be compromised. Previous work revealed hypermetric scaling of tracheal system volume of worker bumble bees (Bombus impatiens); larger workers had much larger tracheal volumes, likely to facilitate oxygen delivery over longer distances. Despite their much larger size, queens had relatively small tracheal volumes, potentially limiting their ability to deliver oxygen and reducing their ability to respond to hypoxia. However, these morphological measurements only indirectly point to differences in respiratory capacity. To directly assess size- and caste-related differences in tolerance to low oxygen, we measured critical PO2 (Pcrit; the ambient oxygen level below which metabolism cannot be maintained) during both rest and flight of worker and queen bumble bees. Queens and workers had similar Pcrit values during both rest and flight. However, during flight in oxygen levels near the Pcrit, mass-specific metabolic rates declined precipitously with mass both across and within castes, suggesting strong size limitations on oxygen delivery, but only during extreme conditions, when demand is high and supply is low. Together, these data suggest that the comparatively small tracheal systems of queen bumble bees do not limit their ability to deliver oxygen except in extreme conditions; they pay little cost for filling body space with eggs rather than tracheal structures.
Collapse
Affiliation(s)
- Rikki M Walter
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Joseph P Rinehart
- Agricultural Research Service, Insect Genetics and Biochemistry, United States Department of Agriculture, Fargo, ND 58102-2765, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA.
| |
Collapse
|
6
|
Grula CC, Rinehart JP, Greenlee KJ, Bowsher JH. Body size allometry impacts flight-related morphology and metabolic rates in the solitary bee Megachile rotundata. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104275. [PMID: 34217739 DOI: 10.1016/j.jinsphys.2021.104275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Body size is related to many aspects of life history, including foraging distance and pollination efficiency. In solitary bees, manipulating the amount of larval diet produces intraspecific differences in adult body size. The goal of this study was to determine how body size impacts metabolic rates, allometry, and flight-related morphometrics in the alfalfa leafcutting bee, Megachile rotundata. By restricting or providing excess food, we produced a range of body sizes, which allowed us to test the effect of body size on allometry, the power required for flight, and amount of energy produced, as measured indirectly through CO2 emission. The power required during flight was predicted using the flight biomechanical formulas for wing loading and excess power index. We found larger bees had higher absolute metabolic rates at rest and during flight, but smaller bees had higher mass-specific metabolic rates at rest. During flight, bees did not have size-related differences in mass-specific metabolic rate. As bees increase in size, their thorax and abdomens become disproportionately larger, while their wings (area, and length) become disproportionately smaller. Smaller bees had more power available during flight as demonstrated by flight biomechanical formulas. Smaller body size was advantageous because of a reduced power requirement for flight with no metabolic cost.
Collapse
Affiliation(s)
- Courtney C Grula
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive 218 Stevens Hall, Fargo, ND 58102, United States.
| | - Joseph P Rinehart
- Insect Genetics and Biochemistry Edward T. Schafer Research Center, U.S. Department of Agriculture/Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, ND 58102, United States.
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive 218 Stevens Hall, Fargo, ND 58102, United States.
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive 218 Stevens Hall, Fargo, ND 58102, United States.
| |
Collapse
|
7
|
Yocum GD, Rajamohan A, Rinehart JP. Comparison of Fluctuating Thermal Regimes and Commercially Achievable Constant-Temperature Regimes for Short-Term Storage of the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:530-537. [PMID: 33686393 DOI: 10.1093/jee/toab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Interrupting the spring incubation of Megachile rotundata (F.) with a period of low-temperature storage for synchronizing the bees' emergence with crop bloom is an essential part of M. rotundata management. Previously, we demonstrated that bees exposed to thermoperiods (TPs) during low-temperature storage have higher survival rates than bees exposed to constant temperatures. But changing the temperature in the large mass of bees commonly found in most commercial settings would place considerable stress on the chambers' refrigeration system. Reducing the difference between a TP's cryophase and thermophase would decrease the stress on the refrigeration system. Therefore, we investigated a range of TPs with cryophases (12 h) of 6, 12, or 15°C and thermophases (12 h) of 15 or 18°C and compared the survival rates of these bees against bees exposed to constant temperatures of 12, 15, or 18°C. For eye-pigmented pupae, the TP 6-18°C and the control fluctuating thermal regime (FTR; 6°C with a daily 1-h pulse at 20°C) had the highest survival rates for the 2 yr tested. For the constant-temperature storage protocols, constant 15 and 18°C were either equivalent or lower survival than the control FTR. For emergence-ready adults, the 6-18°C TP had the highest survival rates. The constant 15°C and the control FTR had equivalent survival rates. Under the current constraints imposed by a commercial chamber's refrigeration system, interrupting M. rotundata spring incubation by exposing the developing bees to constant temperatures of 15-18°C is currently the best option for commercial operations.
Collapse
Affiliation(s)
- George D Yocum
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1616 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - Arun Rajamohan
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1616 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - Joseph P Rinehart
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1616 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| |
Collapse
|
8
|
Tasaki E, Komagata Y, Inagaki T, Matsuura K. Reproduction deep inside wood: a low O 2 and high CO 2 environment promotes egg production by termite queens. Biol Lett 2020; 16:20200049. [PMID: 32264784 DOI: 10.1098/rsbl.2020.0049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Extreme conditions are normal for animals living in harsh environments. These animals adapt to their habitats and can use difficult conditions by default. Organisms living in enclosed spaces, notably termites in decaying wood, experience low O2 and high CO2 gas conditions due to limited gas exchange and high insect density. Termite queens, in particular, reproduce in royal chambers deep inside the wood, wherein tens of thousands of individuals engage in social labour. Here, we demonstrate that royal chambers in termite nests have low O2 and high CO2 gas concentrations, which enhance egg production by queens. We identified a unique gas condition of royal chambers in the nest of the subterranean termite Reticulitermes speratus, which is characterized by low O2 (15.75%) and high CO2 (4.99%) concentrations. Queens showed significantly greater fecundity under the low O2 and high CO2 gas conditions in the royal chambers than under ambient gas conditions. Quantitative PCR analysis revealed that the royal chamber gas conditions significantly promoted the expression levels of the vitellogenin genes RsVg1, RsVg2 and RsVg3 in queens compared with ambient gas conditions. This study highlights the adaptation of animals that live in closed habitats, which are hypoxic and hypercapnic as the result of their own metabolism, so as to have a high fitness in such environmental conditions.
Collapse
Affiliation(s)
- Eisuke Tasaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Yasuyuki Komagata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Tatsuya Inagaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Sang W, Ji R, Lei C, Zhu-Salzman K. Parental hypoxic exposure influences performance of offspring in Callosobruchus maculatus. PEST MANAGEMENT SCIENCE 2019; 75:2810-2819. [PMID: 30843346 DOI: 10.1002/ps.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Modified atmosphere based on lack of O2 can protect stored grains from insect pest damage. Although population expansion of cowpea bruchid (Callosobruchus maculatus (Fabricius)) could be temporarily arrested when exposed to 2% O2 , this insect could survive extended periods of hypoxia and continue its normal development if normoxic conditions resumed. It is not clear whether parental hypoxic treatment has any effects on offspring performance and response to hypoxia. RESULTS Hypoxia postponed development of treated parental bruchids at all stages. Its negative effects on oviposition and hatch rate of these eggs were significant only when hypoxia was administered at the parental fourth instar larval stage or later. When the F1 generation was exposed to hypoxia at the fourth instar larval stage, they exhibited comparable developmental delay and reduction in adult emergence and fecundity whether the parents experienced hypoxia or not. Interestingly, eggs laid by hypoxia-treated F1s had increased hatch rates if their parents had also been exposed to hypoxia. Stronger suppression of the digestive protease gene CatL and elevated basal expression of the stress responsive gene Hsp27 were observed in F1 larvae with parental hypoxic experience. CONCLUSION Parental hypoxic experience appeared to better prepare the F1 progenies for further hypoxic challenge. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application, Department of Entomology, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
| | - Rui Ji
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Department of Entomology, Huazhong Agricultural University, Hubei, Wuhan, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Yocum GD, Rinehart JP, Rajamohan A, Bowsher JH, Yeater KM, Greenlee KJ. Thermoprofile Parameters Affect Survival of Megachile rotundata During Exposure to Low-Temperatures. Integr Comp Biol 2019; 59:1089-1102. [PMID: 31270534 DOI: 10.1093/icb/icz126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Insects exposed to low temperature stress can experience chill injury, but incorporating fluctuating thermoprofiles increases survival and blocks the development of sub-lethal effects. The specific parameters required for a protective thermoprofile are poorly understood, because most studies test a limited range of thermoprofiles. For example, thermoprofiles with a wave profile may perform better than a square profile, but these two profiles are rarely compared. In this study, two developmental stages of the alfalfa leafcutting bee, Megachile rotundata, eye-pigmented pupae, and emergence-ready adults, were exposed to one of eight thermoprofiles for up to 8 weeks. All the thermoprofiles had a base of 6°C and a peak temperature of either 12°C or 18°C. The duration at peak temperature varied depending on the shape of the thermoprofile, either square or wave form. Two other treatments acted as controls, a constant 6°C and a fluctuating thermal regime (FTR) with a base temperature of 6°C that was interrupted daily by a single, 1-h pulse at 20°C. Compared with constant 6°C, all the test thermoprofiles significantly improved survival. Compared with the FTR control, the thermoprofiles with a peak temperature of 18°C outperformed the 12°C profiles. Bees in the eye-pigmented stage exposed to the 18°C profiles separated into two groups based on the shape of the profile, with higher survival in the square profiles compared with the wave profiles. Bees in the emergence-ready stage exposed to 18°C profiles all had significantly higher survival than bees in the FTR controls. Counter to expectations, the least ecologically relevant thermoprofiles (square) had the highest survival rates and blocked the development of sub-lethal effects (delayed emergence).
Collapse
Affiliation(s)
- George D Yocum
- United States Department of Agriculture, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard North, Fargo, ND 58102-2765, USA
| | - Joseph P Rinehart
- United States Department of Agriculture, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard North, Fargo, ND 58102-2765, USA
| | - Arun Rajamohan
- United States Department of Agriculture, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard North, Fargo, ND 58102-2765, USA
| | - Julia H Bowsher
- Department of Biological Sciences, Stevens Hall, P.O. Box 6050, North Dakota State University, Fargo, ND 58108, USA
| | - Kathleen M Yeater
- USDA-ARS-PA-NRRC, Office of the Director, 2150 Centre Avenue, Building D, Suite 300, Fort Collins, CO 80526, USA
| | - Kendra J Greenlee
- United States Department of Agriculture, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard North, Fargo, ND 58102-2765, USA.,Department of Biological Sciences, Stevens Hall, P.O. Box 6050, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
11
|
Tasaki E, Matsuura K, Iuchi Y. Hypoxia adaptation in termites: hypoxic conditions enhance survival and reproductive activity in royals. INSECT MOLECULAR BIOLOGY 2018; 27:808-814. [PMID: 29989656 DOI: 10.1111/imb.12519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Termite royals (queen and king) exhibit extraordinary longevity without sacrificing reproductive performance, unlike most animals, in whom lifespan is generally negatively associated with reproduction. Therefore, the regulatory mechanisms underlying longevity have attracted much attention. Although the ageing process is influenced by environmental factors in many insects during their life cycle, it remains unclear whether any factors have an effect on the extended survival and high reproductive capacity of termite royals. Here, we show that hypoxia, possibly an important environmental factor in the nests, enhances survival and reproductive activity in incipient royals of the subterranean termite Reticulitermes speratus compared with those in control conditions. Quantitative real-time PCR analysis revealed that the expression levels of the vitellogenin gene in queens are maintained to a greater extent under hypoxic conditions than under control conditions. The expression levels of the antioxidant enzyme genes RsCAT1 and RsPHGPX are also significantly promoted by hypoxia in queens and kings respectively. These results suggest that hypoxic exposure can contribute in part to achieving high reproductive output by altering gene expression after founding of colonies in the royals. Our study provides novel insights into the effect of a nest environment on the reproductive characteristics in termite royals.
Collapse
Affiliation(s)
- E Tasaki
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| | - K Matsuura
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Y Iuchi
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
12
|
Cui S, Wang L, Qiu J, Liu Z, Geng X. Comparative metabolomics analysis of Callosobruchus chinensis larvae under hypoxia, hypoxia/hypercapnia and normoxia. PEST MANAGEMENT SCIENCE 2017; 73:1267-1276. [PMID: 27718517 DOI: 10.1002/ps.4455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/02/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Insect tolerance to low oxygen (hypoxia) and high carbon dioxide (hypercapnia) is critical for insect control. On the basis of bioassay, metabolism profiles were built to investigate adaptive mechanisms in bean weevil under hypoxia (2% O2 ), hypoxia/hypercapnia (2% O2 + 18% CO2 ) and normoxia (control, 20% O2 + 80% N2 ) using gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS). RESULTS The growth and development of bean weevils were significantly suppressed by the two hypoxia conditions; hypercapnia enhanced the mortality, but after 24 days of exposure, the surviving insects emerged as adults earlier than those under hypoxia only. Metabolism profiles also showed striking differences in metabolites among the treatment and control groups, both quantitatively and qualitatively. Pairwise comparisons of the three groups showed that 61 metabolites changed significantly, 40 in the hypoxia group and 37 in the hypoxia/hypercapnia group relative to the control group, while only 16 were shared equally by the hypoxia and hypoxia/hypercapnia groups. Increased metabolites were mainly carbohydrates, amino acids and organic acids, while free fatty acids were decreased. Furthermore, the changes were strengthened by the addition of hypercapnia, but excluding free fatty acids. CONCLUSION The findings show that bean weevil has high tolerance to hypoxia or even hypoxia/hypercapnia at biologically achievable levels and provide more direct evidence for stored product insect mechanism regulation under hypoxia stress, especially free fatty acid regulation by hypercapnia but not by hypoxia. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sufen Cui
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangping Qiu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhicheng Liu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Geng
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Different age-dependent performance in Drosophila wild-type Canton-S and the white mutant w1118 flies. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:17-23. [PMID: 28087331 DOI: 10.1016/j.cbpa.2017.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/23/2016] [Accepted: 01/08/2017] [Indexed: 11/23/2022]
Abstract
Aging has significant effects on the locomotor performance of insects including Drosophila. Using a protocol for the high-throughput analysis of fly locomotion in a circular arena, we examined age-dependent behavioral characteristics in adult flies. There are widely used wild-type and genetically engineered background lines including the Canton-S strain and the w1118 strain, which has a null mutation of the white gene. Under standard rearing conditions, we found similar survival and median lifespans in Canton-S (50days) and w1118 (54days) strains, however, w1118 flies maintained stable body mass for up to 43days, whereas Canton-S flies gained body mass at young age, followed by a gradual decline. We also tested the behavioral performance of young and old flies. Compared with young w1118 flies (5-10days), old w1118 flies (40-45days) had an increased boundary preference during locomotion in small circular arenas, and increased speed of locomotor recovery from anoxia. Old Canton-S files, however, exhibited unchanged boundary preference and reduced recovery speed from anoxia relative to young flies. In addition, old w1118 flies showed decreased path length per minute and reduced 0.2s path increment compared with young flies, whereas old Canton-S flies displayed the same path length per minute and the same 0.2s path increment compared with young flies. We conclude that age-dependent behavioral and physiological changes differ between Canton-S and w1118 flies. These results illustrate that phenotypic differences between strains can change qualitatively, as well as quantitatively, as the animals age.
Collapse
|
14
|
Yocum GD, Rinehart JP, Yocum IS, Kemp WP, Greenlee KJ. Thermoperiodism Synchronizes Emergence in the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae). ENVIRONMENTAL ENTOMOLOGY 2016; 45:245-251. [PMID: 26385932 DOI: 10.1093/ee/nvv152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Alfalfa seed production in the northwestern United States and western Canada is heavily dependent upon the pollinating services of Megachile rotundata (F.) (Hymenoptera: Megachilidae). M. rotundata females nest in cavities either naturally occurring or in artificial nesting blocks. Because of the physical nature of the nest, M. rotundata brood may have limited to no exposure to photoperiodic cues in order to regulate important circadian functions. Therefore, various thermoperiod regimes were used to characterize the possible role of thermoperiodism in synchronizing M. rotundata adult emergence. Adult emergence was monitored using a microprocessor-controlled event logger. Incubating bees under constant 29°C and darkness resulted in an arhythmic adult emergence pattern. Exposing developing M. rotundata to a thermoperiod synchronized emergence to the beginning of the thermophase and decreased the total number of days required for all adults to emerge. The amplitude of the thermoperiod regulated the timing of peak emergence in relationship to the increase in temperature. A thermoperiod amplitude of only 2°C was sufficient to synchronize peak adult emergence to take place during the rise in temperature. Increasing the amplitude of the thermoperiod to 4 or 8°C caused a positively correlated shift in peak emergence to later in the thermophase. Brood stored under constant 29°C and darkness for different durations (May or June early in the growing season or July or August late in the growing season) or under a fluctuating thermal regime (base temperature of 6°C and daily 1-h pulse of 20°C until September or November) maintained their capacity for entraining emergence timing by thermoperiodism.
Collapse
Affiliation(s)
- George D Yocum
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Blvd., Fargo, ND 58102-2765 (; ; ; ),
| | - Joseph P Rinehart
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Blvd., Fargo, ND 58102-2765 (; ; ; )
| | - Ian S Yocum
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Blvd., Fargo, ND 58102-2765 (; ; ; )
| | - William P Kemp
- USDA-ARS Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Blvd., Fargo, ND 58102-2765 (; ; ; )
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, PO Box 6050, Dept. 2715, Fargo, ND 58108-6050
| |
Collapse
|
15
|
Bennett MM, Cook KM, Rinehart JP, Yocum GD, Kemp WP, Greenlee KJ. Exposure to Suboptimal Temperatures during Metamorphosis Reveals a Critical Developmental Window in the Solitary Bee, Megachile rotundata. Physiol Biochem Zool 2015; 88:508-20. [DOI: 10.1086/682024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|