1
|
Xu G, Fu L, Wu L, Lu J, Xu M, Qian R, Shao C, Qian M, Zhang Y, Yang G. A tyramine receptor gene LsTAR2 is involved in reproduction and feeding in the small brown planthopper Laodelphax striatellus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106335. [PMID: 40082032 DOI: 10.1016/j.pestbp.2025.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/16/2025]
Abstract
Tyramine (TA) is an important biogenic amine present in the central nervous system of insects, and mediates a variety of physiological and behavioral functions via tyramine receptors (TARs). However, TARs have not yet been characterized in planthoppers, and their physiological functions remain poorly understood in rice pests. Here, we cloned a tyramine receptor gene (LsTAR2) from the small brown planthopper Laodelphax striatellus, one of the most destructive rice pests. LsTAR2 shares high sequence identity with its orthologous receptors, and is closely related to its corresponding receptor groups. LsTAR2 transcript was expressed mostly in the egg stage and brain. RNAi-mediated knockdown of LsTAR2 significantly prolonged the preoviposition period and decreased the fecundity in females. Furthermore, LsTAR2 knockdown reduced the expression levels of vitellogenin (LsVg) in the fat body and ovary of L. striatellus, and changed the expressions of juvenile hormone (JH) and 20-hydroxyecdysone (20E) pathway genes. In addition, LsTAR2 knockdown significantly decreased the honeydew excretion of the adults, and affected the transcript levels of feeding-related neuropeptide signaling genes. These results provide critical information concerning the role of LsTAR2 in reproduction and feeding behavior in L. striatellus, and open the way for further investigations into novel strategies targeting TARs for pest control.
Collapse
Affiliation(s)
- Gang Xu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China.
| | - Liran Fu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Liang Wu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Jing Lu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Meiqi Xu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Ruhao Qian
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Chenjia Shao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Mingshi Qian
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Yuanyuan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Guoqing Yang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China.
| |
Collapse
|
2
|
Liu T, Zhan X, Yu Y, Wang S, Lu C, Lin G, Zhu X, He W, You M, You S. Molecular and pharmacological characterization of biogenic amine receptors from the diamondback moth, Plutella xylostella. PEST MANAGEMENT SCIENCE 2021; 77:4462-4475. [PMID: 34004073 DOI: 10.1002/ps.6481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUD Insect biogenic amines play important roles in mediating behavioral and physiological processes. They exert their effects by binding to biogenic amine receptors (BARs), which are specific receptor proteins in the G-protein-coupled receptor superfamily. BAR genes have been cloned and characterized from multiple model insects, including Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Apis mellifera and Tribolium castaneum. However, relatively little work has addressed the molecular properties, expression profiles, and pharmacological characterization of BARs from other insects, including important pests. RESULTS In this study, we cloned 17 genes encoding putative biogenic amine receptor proteins from Plutella xylostella, a global pest of Brassica crops. These PxBAR genes were five octopamine receptors (PxOA1, PxOA2B1, PxOA2B2, PxOA2B3, and PxOA3), three tyramine receptors (PxTAR1A, PxTAR1B, and PxTAR2), four dopamine receptors (PxDOP1, PxDOP2, PxDOP3, and PxDopEcR), and five serotonin receptors (Px5-HT1A , Px5-HT1B , Px5-HT2A , Px5-HT2B , and Px5-HT7 ). All PxBARs showed considerable sequence identity with orthologous BARs, and phylogenetic analysis clustered the receptors within their respective groups while preserving organismal evolutionary relationships. We investigated their molecular properties and expression profiles, and pharmacologically characterized the dopamine receptor, PxDOP2. CONCLUSIONS Our study provides important information and resources on biogenic amine receptors from P. xylostella, which suggests potential target sites for controlling this pest species. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tiansheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Xue Zhan
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Yuan Yu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Shaozhen Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cong Lu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Xiangyu Zhu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China
| |
Collapse
|
3
|
Sui X, Zhao M, Liu Y, Wang J, Li G, Zhang X, Deng Y. Enhancing glutaric acid production in Escherichia coli by uptake of malonic acid. J Ind Microbiol Biotechnol 2020; 47:311-318. [PMID: 32140931 DOI: 10.1007/s10295-020-02268-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Glutaric acid is an important organic acid applied widely in different fields. Most previous researches have focused on the production of glutaric acid in various strains using the 5-aminovaleric acid (AMV) or pentenoic acid synthesis pathways. We previously utilized a five-step reversed adipic acid degradation pathway (RADP) in Escherichia coli BL21 (DE3) to construct strain Bgl146. Herein, we found that malonyl-CoA was strictly limited in this strain, and increasing its abundance could improve glutaric acid production. We, therefore, constructed a malonic acid uptake pathway in E. coli using matB (malonic acid synthetase) and matC (malonic acid carrier protein) from Clover rhizobia. The titer of glutaric acid was improved by 2.1-fold and 1.45-fold, respectively, reaching 0.56 g/L and 4.35 g/L in shake flask and batch fermentation following addition of malonic acid. Finally, the highest titer of glutaric acid was 6.3 g/L in fed-batch fermentation at optimized fermentation conditions.
Collapse
Affiliation(s)
- Xue Sui
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Mei Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing, 100048, China
- The Open Project Program of China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing, 100048, China
- The Open Project Program of China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
4
|
Chang CC, Kuo HW, Liu CC, Cheng W. The temporary modulation of tyramine on immune responses, carbohydrate metabolism, and catecholamines in Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2020; 98:1-9. [PMID: 31904540 DOI: 10.1016/j.fsi.2019.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/25/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Tyramine (TA), a biogenic monoamine, plays various important physiological roles including immunological regulation in invertebrates. In this study, the effects of TA on the regulation of immune resistance, carbohydrate metabolism and biogenic monoamine, as well as its signaling pathway in Macrobrachium rosenbergii were determined. Results showed that total haemocyte count, hyaline cells, semigranular cells, and phenoloxidase activity per 50 μL of haemolymph and per granulocyte (the sum of semigranular and granular cells) at 0.5 h as well as phagocytic activity and clearance efficiency to Lactococcus garvieae at 1 h of prawn injected with TA at 1 nmol prawn-1 significantly increased, but the significantly decreased plasma lysozyme activity, phagocytic activity, clearance efficiency, and haemolymph glucose and dopamine were observed in prawn injected with TA at 10 nmol prawn-1 for 0.5 h. Respiratory bursts and haemolymph lactate in two TA-injection treatments at 0.5 h and 0.5-1 h, respectively, were significantly higher than those of the saline control, and in addition, TA depressed dopamine release in a dose-dependent manner after 0.5 h of TA injection. All the examined parameters returned to control levels after prawn injected with TA for 2 h. The inhibited effect of TA (at 10 nmol prawn-1 injection) on the phagocytic activity and clearance efficiency to pathogens was blocked by prazosin (an α1 adrenoceptors antagonist). For prawn received TA for 1 h then challenged with Lactococcus garvieae at 2 × 105 colony-forming units prawn-1, the survival ratio of TA 1 nmol prawn-1-injected prawn significantly increased by 20%, compared to the saline-challenged control or TA 10 nmol prawn-1-injected prawn after 144 h of challenge. These results suggested that the level of dopamine release suppression regulated by TA resulted in the immunoenhancing or immunosuppressive effects in prawn, and the signaling pathways of TA in mediating immune function were through octopamine (OA)/TA receptors.
Collapse
Affiliation(s)
- Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Hsin-Wei Kuo
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Chang-Chi Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
5
|
Kuo HW, Chang CC, Cheng W. Tyramine's modulation of immune resistance functions in Litopenaeus vannamei and its signal pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:68-76. [PMID: 30682447 DOI: 10.1016/j.dci.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Tyramine (TA), a neuroactive chemical, plays various important physiological roles in insects by activating distinct G-protein-coupled receptors (GPCRs). In this study, we investigated the effects of by pharmacological injection of TA on immune resistance regulation and its signal pathway in white shrimp Litopenaeus vannamei. Results showed significant increases in the total haemocyte count (THC), semigranular cells (SGCs), granular cells (GCs), phenoloxidase (PO) activity per 50 μL of haemolymph and respiratory bursts (RBs) at 0.5, 1, 2 and/or 4 h; hyaline cells (HCs) at 0.5 h, as well as phagocytic activity (PA) and clearance efficiency (CE) at 2, 4 and/or 8 h, but significantly decreased PO activity per granulocyte at 0.5-2 h for shrimp injected with TA at 100 and 1000 pmol shrimp-1. Plasma lysozyme activities of TA-injected shrimp were significantly higher than those of the saline control at 1 h. All of the immune parameters had returned to control levels by 8 h after receiving TA except the clearance efficiency, which had returned to its control value by 16 h. The TA injection also significantly decreased the mortality of shrimp challenged with Vibrio alginolyticus. Furthermore, immune parameters of shrimp that received TA at 1000 pmol shrimp-1 for 1 h were higher than those of shrimp that received the saline. The upregulating effect of TA was blocked by co-injection with phentolamine (Phe) in terms of the THC, HC, SGCs, PO activity, PA and CE; by co-injection with prazosin (Pra) in terms of the THC, HC, SGCs, PO activity, PA and CE; by co-injection with propranolol (Prop) in terms of the PA and CE; and by co-injection with metoprolol (Meto) in terms of the THC and SGCs. The most potent effect in immunocompetence of tested antagonists was Pra, and except for circulating haemocyte, it was Phe. These results suggest that ≤1000 pmol shrimp-1 of a TA injection mediates transient upregulation of immunity, which in turn promotes the resistance of L. vannamei to V. alginolyticus, and the active effects are mediated via octopamine/tyramine (OA/TA) receptors.
Collapse
Affiliation(s)
- Hsin-Wei Kuo
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
6
|
Sukumar V, Liu H, Meisner S, French AS, Torkkeli PH. Multiple Biogenic Amine Receptor Types Modulate Spider, Cupiennius salei, Mechanosensory Neurons. Front Physiol 2018; 9:857. [PMID: 30050453 PMCID: PMC6052906 DOI: 10.3389/fphys.2018.00857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/15/2018] [Indexed: 12/02/2022] Open
Abstract
The biogenic amines octopamine (OA), tyramine (TA), dopamine (DA), serotonin (5-HT), and histamine (HA) affect diverse physiological and behavioral processes in invertebrates, but recent findings indicate that an additional adrenergic system exists in at least some invertebrates. Transcriptome analysis has made it possible to identify biogenic amine receptor genes in a wide variety of species whose genomes have not yet been sequenced. This approach provides new sequences for research into the evolutionary history of biogenic amine receptors and allows them to be studied in experimentally accessible animal models. The Central American Wandering spider, Cupiennius salei, is an experimental model for neurophysiological, developmental and behavioral research. We identified ten different biogenic amine receptors in C. salei transcriptomes. Phylogenetic analysis indicated that, in addition to the typical receptors for OA, TA, DA, and 5-HT in protostome invertebrates, spiders also have α1- and α2-adrenergic receptors, but lack TAR2 receptors and one invertebrate specific DA receptor type. In situ hybridization revealed four types of biogenic amine receptors expressed in C. salei mechanosensory neurons. We used intracellular electrophysiological experiments and pharmacological tools to determine how each receptor type contributes to modulation of these neurons. We show that arachnids have similar groups of biogenic amine receptors to other protostome invertebrates, but they lack two clades. We also clarify that arachnids and many other invertebrates have both α1- and α2-adrenergic, likely OA receptors. Our results indicate that in addition to an OAβ-receptor that regulates rapid and large changes in sensitivity via a Gs-protein activating a cAMP mediated pathway, the C. salei mechanosensory neurons have a constitutively active TAR1 and/or α2-adrenergic receptor type that adjusts the baseline sensitivity to a level appropriate for the behavioral state of the animal by a Gq-protein that mobilizes Ca2+.
Collapse
Affiliation(s)
- Vaishnavi Sukumar
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Shannon Meisner
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
8
|
Hana S, Lange AB. Cloning and Functional Characterization of Octβ2-Receptor and Tyr1-Receptor in the Chagas Disease Vector, Rhodnius prolixus. Front Physiol 2017; 8:744. [PMID: 29018364 PMCID: PMC5623054 DOI: 10.3389/fphys.2017.00744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022] Open
Abstract
Octopamine and tyramine, both biogenic amines, are bioactive chemicals important in diverse physiological processes in invertebrates. In insects, octopamine and tyramine operate analogously to epinephrine and norepinephrine in the vertebrates. Octopamine and tyramine bind to G-protein coupled receptors (GPCRs) leading to changes in second messenger levels and thereby modifying the function in target tissues and insect behavior. In this paper, we report the cDNA sequences of two GPCRs, RhoprOctβ2-R, and RhoprTyr1-R, have been cloned and functionally characterized from Rhodnius prolixus. Octopamine and tyramine each activate RhoprOctβ2-R and RhoprTyr1-R in a dose-dependent manner. Octopamine is one order of magnitude more potent than tyramine in activating RhoprOctβ2-R. Tyramine is two orders of magnitude more potent than octopamine in activating RhoprTyr1-R. Phentolamine and gramine significantly antagonize RhoprOctβ2-R, whereas yohimbine and phenoxybenzamine are effective blockers of RhoprTyr1-R. The transcripts of both receptors are enriched in the central nervous system (CNS) and are expressed throughout the adult female reproductive system. It has been shown in other insects that Octβ2-R is essential for processes such as ovulation and fertilization. We previously reported that octopamine and tyramine modulate oviducts and bursa contractions in R. prolixus. Our data confirm the importance of octopamine and tyramine signaling in the reproductive system of R. prolixus.
Collapse
Affiliation(s)
- Sam Hana
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
9
|
Xu G, Wu SF, Gu GX, Teng ZW, Ye GY, Huang J. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:80-93. [PMID: 28302436 DOI: 10.1016/j.ibmb.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 06/06/2023]
Abstract
Dopamine is an important neurotransmitter and neuromodulator in both vertebrates and invertebrates and is the most abundant monoamine present in the central nervous system of insects. A complement of functionally distinct dopamine receptors mediate the signal transduction of dopamine by modifying intracellular Ca2+ and cAMP levels. In the present study, we pharmacologically characterized three types of dopamine receptors, CsDOP1, CsDOP2 and CsDOP3, from the rice striped stem borer, Chilo suppressalis. All three receptors show considerable sequence identity with orthologous dopamine receptors. The phylogenetic analysis also clusters the receptors within their respective groups. Transcript levels of CsDOP1, CsDOP2 and CsDOP3 were all expressed at high levels in the central nervous system, indicating their important roles in neural processes. After heterologous expression in HEK 293 cells, CsDOP1, CsDOP2 and CsDOP3 were dose-dependently activated by dopamine and synthetic dopamine receptor agonists. They can also be blocked by different series of antagonists. This study offers important information on three dopamine receptors from C. suppressalis that will provide the basis for forthcoming studies investigating their roles in behaviors and physiology, and facilitate the development of new insecticides for pest control.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jia Huang
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Identification of multiple functional receptors for tyramine on an insect secretory epithelium. Sci Rep 2017; 7:168. [PMID: 28279025 PMCID: PMC5427925 DOI: 10.1038/s41598-017-00120-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
The biogenic amine tyramine (TA) regulates many aspects of invertebrate physiology and development. Although three TA receptor subtypes have been identified (TAR1-3), specific receptors have not been linked to physiological responses in native tissue. In the Malpighian (renal) tubule of Drosophila melanogaster, TA activates a transepithelial chloride conductance, resulting in diuresis and depolarization of the transepithelial potential. In the current work, mutation or RNAi-mediated knockdown in the stellate cells of the tubule of TAR2 (tyrR, CG7431) resulted in a dramatic reduction, but not elimination, of the TA-mediated depolarization. Mutation or knockdown of TAR3 (tyrRII, CG16766) had no effect. However, deletion of both genes, or knockdown of TAR3 on a TAR2 mutant background, eliminated the TA responses. Thus while TAR2 is responsible for the majority of the TA sensitivity of the tubule, TAR3 also contributes to the response. Knockdown or mutation of TAR2 also eliminated the response of tubules to the related amine octopamine (OA), indicating that OA can activate TAR2. This finding contrasts to reports that heterologously expressed TAR2 is highly selective for TA over OA. This is the first report of TA receptor function in a native tissue and indicates unexpected complexity in the physiology of the Malpighian tubule.
Collapse
|
11
|
Bauknecht P, Jékely G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol 2017; 15:6. [PMID: 28137258 PMCID: PMC5282848 DOI: 10.1186/s12915-016-0341-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
Background Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered absent and analogous functions are performed by the biogenic amines octopamine and its precursor tyramine. These chemically similar transmitters signal by related families of G-protein-coupled receptors in vertebrates and invertebrates, suggesting that octopamine/tyramine are the invertebrate equivalents of vertebrate norepinephrine. However, the evolutionary relationships and origin of these transmitter systems remain unclear. Results Using phylogenetic analysis and receptor pharmacology, here we have established that norepinephrine, octopamine, and tyramine receptors coexist in some marine invertebrates. In the protostomes Platynereis dumerilii (an annelid) and Priapulus caudatus (a priapulid), we have identified and pharmacologically characterized adrenergic α1 and α2 receptors that coexist with octopamine α, octopamine β, tyramine type 1, and tyramine type 2 receptors. These receptors represent the first examples of adrenergic receptors in protostomes. In the deuterostome Saccoglossus kowalevskii (a hemichordate), we have identified and characterized octopamine α, octopamine β, tyramine type 1, and tyramine type 2 receptors, representing the first examples of these receptors in deuterostomes. S. kowalevskii also has adrenergic α1 and α2 receptors, indicating that all three signaling systems coexist in this animal. In phylogenetic analysis, we have also identified adrenergic and tyramine receptor orthologs in xenacoelomorphs. Conclusions Our results clarify the history of monoamine signaling in bilaterians. Given that all six receptor families (two each for octopamine, tyramine, and norepinephrine) can be found in representatives of the two major clades of Bilateria, the protostomes and the deuterostomes, all six receptors must have coexisted in the last common ancestor of the protostomes and deuterostomes. Adrenergic receptors were lost from most insects and nematodes, and tyramine and octopamine receptors were lost from most deuterostomes. This complex scenario of differential losses cautions that octopamine signaling in protostomes is not a good model for adrenergic signaling in deuterostomes, and that studies of marine animals where all three transmitter systems coexist will be needed for a better understanding of the origin and ancestral functions of these transmitters. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0341-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Bauknecht
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany.
| |
Collapse
|
12
|
Xu G, Wu SF, Wu YS, Gu GX, Fang Q, Ye GY. De novo assembly and characterization of central nervous system transcriptome reveals neurotransmitter signaling systems in the rice striped stem borer, Chilo suppressalis. BMC Genomics 2015; 16:525. [PMID: 26173787 PMCID: PMC4501067 DOI: 10.1186/s12864-015-1742-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/30/2015] [Indexed: 01/27/2023] Open
Abstract
Background Neurotransmitter signaling systems play crucial roles in multiple physiological and behavioral processes in insects. Genome wide analyses of de novo transcriptome sequencing and gene specific expression profiling provide rich resources for studying neurotransmitter signaling pathways. The rice striped stem borer, Chilo suppressalis is a destructive rice pest in China and other Asian countries. The characterization of genes involved in neurotransmitter biosynthesis and transport could identify potential targets for disruption of the neurochemical communication and for crop protection. Results Here we report de novo sequencing of the C. suppressalis central nervous system transcriptome, identification and expression profiles of genes putatively involved in neurotransmitter biosynthesis, packaging, and recycling/degradation. A total of 54,411 unigenes were obtained from the transcriptome analysis. Among these unigenes, we have identified 32 unigenes (31 are full length genes), which encode 21 enzymes and 11 transporters putatively associated with biogenic aminergic signaling, acetylcholinergic signaling, glutamatergic signaling and GABAergic signaling. RT-PCR and qRT-PCR results indicated that 12 enzymes were highly expressed in the central nervous system and all the transporters were expressed at significantly high levels in the central nervous system. In addition, the transcript abundances of enzymes and transporters in the central nervous system were validated by qRT-PCR. The high expression levels of these genes suggest their important roles in the central nervous system. Conclusions Our study identified genes potentially involved in neurotransmitter biosynthesis and transport in C. suppressalis and these genes could serve as targets to interfere with neurotransmitter production. This study presents an opportunity for the development of specific and environmentally safe insecticides for pest control. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1742-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China. .,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ya-Su Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qi Fang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|