1
|
Zhao Q, Zheng Y, Li Y, Shi L, Zhang J, Ma D, You M. An Orphan Gene Enhances Male Reproductive Success in Plutella xylostella. Mol Biol Evol 2024; 41:msae142. [PMID: 38990889 PMCID: PMC11290247 DOI: 10.1093/molbev/msae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Plutella xylostella exhibits exceptional reproduction ability, yet the genetic basis underlying the high reproductive capacity remains unknown. Here, we demonstrate that an orphan gene, lushu, which encodes a sperm protein, plays a crucial role in male reproductive success. Lushu is located on the Z chromosome and is prevalent across different P. xylostella populations worldwide. We subsequently generated lushu mutants using transgenic CRISPR/Cas9 system. Knockout of Lushu results in reduced male mating efficiency and accelerated death in adult males. Furthermore, our findings highlight that the deficiency of lushu reduced the transfer of sperms from males to females, potentially resulting in hindered sperm competition. Additionally, the knockout of Lushu results in disrupted gene expression in energy-related pathways and elevated insulin levels in adult males. Our findings reveal that male reproductive performance has evolved through the birth of a newly evolved, lineage-specific gene with enormous potentiality in fecundity success. These insights hold valuable implications for identifying the target for genetic control, particularly in relation to species-specific traits that are pivotal in determining high levels of fecundity.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Yahong Zheng
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiying Li
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingping Shi
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Dongna Ma
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
2
|
Sales K, Thomas P, Gage MJG, Vasudeva R. Experimental heatwaves reduce the effectiveness of ejaculates at occupying female reproductive tracts in a model insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231949. [PMID: 38721134 PMCID: PMC11076118 DOI: 10.1098/rsos.231949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 07/31/2024]
Abstract
Globally, heatwaves have become more common with hazardous consequences on biological processes. Research using a model insect (Tribolium castaneum) found that 5-day experimental heatwave conditions damaged several aspects of male reproductive biology, while females remained unaffected. However, females' reproductive fitness may still be impacted, as insects typically store sperm from multiple males in specialized organs for prolonged periods. Consequently, using males which produce sperm with green fluorescent protein (GFP)-tagged sperm nuclei, we visualized in vivo whether thermal stress affects the ejaculate occupancy across female storage sites under two scenarios; (i) increasing time since insemination and (ii) in the presence of defending competitor sperm. We reconfirmed that sperm from heatwave-exposed males sired fewer offspring with previously mated females and provided new scenarios for in vivo distributions of heat-stress-exposed males' sperm. Sperm from heatwave-exposed males occupied a smaller area and were at lower densities across the females' storage sites. Generally, sperm occupancy decreased with time since insemination, and sperm from the first male to mate dominated the long-term storage site. Reassuringly, although heated males' ejaculate was less successful in occupying female tracts, they were not lost from female storage at a faster rate and were no worse than control males in their offensive ability to enter storage sites occupied by competitor sperm. Future work should consider the potential site-specificity of factors influencing sperm storage where amenable.
Collapse
Affiliation(s)
- Kris Sales
- Forest Research, Inventory, Forecasting and Operational Support (IFOS), FarnhamGU10 4LH, UK
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
| | - Matthew J. G. Gage
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
| | - Ramakrishnan Vasudeva
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
3
|
Competitive Sperm-Marked Beetles for Monitoring Approaches in Genetic Biocontrol and Studies in Reproductive Biology. Int J Mol Sci 2022; 23:ijms232012594. [DOI: 10.3390/ijms232012594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Sperm marking provides a key tool for reproductive biology studies, but it also represents a valuable monitoring tool for genetic pest control strategies such as the sterile insect technique. Sperm-marked lines can be generated by introducing transgenes that mediate the expression of fluorescent proteins during spermatogenesis. The homozygous lines established by transgenesis approaches are going through a genetic bottleneck that can lead to reduced fitness. Transgenic SIT approaches have mostly focused on Dipteran and Lepidopteran pests so far. With this study, we provide sperm-marked lines for the Coleopteran pest model organism, the red flour beetle Tribolium castaneum, based on the β2-tubulin promoter/enhancer driving red (DsRed) or green (EGFP) fluorescence. The obtained lines are reasonably competitive and were thus used for our studies on reproductive biology, confirming the phenomenon of ‘last-male sperm precedence’ and that the spermathecae are deployed for long-term sperm storage, enabling the use of sperm from first mating events even after secondary mating events for a long period of time. The homozygosity and competitiveness of the lines will enable future studies to analyze the controlled process of sperm movement into the long-term storage organ as part of a post-mating cryptic female choice mechanism of this extremely promiscuous species.
Collapse
|
4
|
Churchill ER, Dytham C, Bridle JR, Thom MDF. Social and physical environment independently affect oviposition decisions in Drosophila. Behav Ecol 2021; 32:1391-1399. [PMID: 34949961 PMCID: PMC8691557 DOI: 10.1093/beheco/arab105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/23/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
In response to environmental stimuli, including variation in the presence of conspecifics, genotypes show highly plastic responses in behavioral and physiological traits influencing reproduction. Although extensively documented in males, such female responses are rather less studied. We expect females to be highly responsive to environmental variation and to differentially allocate resources to increase offspring fitness, given the major contribution of mothers to offspring number, size, and developmental conditions. Using Drosophila melanogaster, we (a) manipulate exposure to conspecific females, which mothers could use to anticipate the number of potential mates and larval density, and; (b) test how this interacts with the spatial distribution of potential oviposition sites, with females from higher densities expected to prefer clustered resources that can support a larger number of larvae. We found that high density females were slower to start copulating and reduced their copulation duration, the opposite effect to that observed in males. There was a parallel, perhaps related, effect on egg production: females previously housed in groups laid fewer eggs than those housed in solitude. Resource patchiness also influenced oviposition behavior: females preferred aggregated substrate, which attracted more females to lay eggs. However, we found no interaction between prior housing conditions and resource patchiness, indicating that females did not perceive the value of different resource distributions differently when exposed to environments that could signal expected levels of larval competition. We show that, although exposure to consexual competition changes copulatory behaviors of females, the distribution of oviposition resources has a greater effect on oviposition decisions.
Collapse
Affiliation(s)
- Emily R Churchill
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Jon R Bridle
- Department for Genetics, Evolution and Environment, University College London, London, UK
| | - Michael D F Thom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
5
|
Vasudeva R, Dickinson M, Sutter A, Powell S, Sales K, Gage M. Facultative polyandry protects females from compromised male fertility caused by heatwave conditions. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Pointer MD, Gage MJG, Spurgin LG. Tribolium beetles as a model system in evolution and ecology. Heredity (Edinb) 2021; 126:869-883. [PMID: 33767370 PMCID: PMC8178323 DOI: 10.1038/s41437-021-00420-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
Flour beetles of the genus Tribolium have been utilised as informative study systems for over a century and contributed to major advances across many fields. This review serves to highlight the significant historical contribution that Tribolium study systems have made to the fields of ecology and evolution, and to promote their use as contemporary research models. We review the broad range of studies employing Tribolium to make significant advances in ecology and evolution. We show that research using Tribolium beetles has contributed a substantial amount to evolutionary and ecological understanding, especially in the fields of population dynamics, reproduction and sexual selection, population and quantitative genetics, and behaviour, physiology and life history. We propose a number of future research opportunities using Tribolium, with particular focus on how their amenability to forward and reverse genetic manipulation may provide a valuable complement to other insect models.
Collapse
Affiliation(s)
- Michael D Pointer
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Matthew J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
7
|
Demont M, Ward PI, Blanckenhorn WU, Lüpold S, Martin OY, Bussière LF. How biases in sperm storage relate to sperm use during oviposition in female yellow dung flies. Behav Ecol 2021. [DOI: 10.1093/beheco/arab026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Precise mechanisms underlying sperm storage and utilization are largely unknown, and data directly linking stored sperm to paternity remain scarce. We used competitive microsatellite PCR to study the effects of female morphology, copula duration and oviposition on the proportion of stored sperm provided by the second of two copulating males (S2) in Scathophaga stercoraria (Diptera: Scathophagidae), the classic model for sperm competition studies. We genotyped all offspring from potentially mixed-paternity clutches to establish the relationship between a second male’s stored sperm (S2) and paternity success (P2). We found consistent skew in sperm storage across the three female spermathecae, with relatively more second-male sperm stored in the singlet spermatheca than in the doublet spermathecae. S2 generally decreased with increasing spermathecal size, consistent with either heightened first-male storage in larger spermathecae, or less efficient sperm displacement in them. Additionally, copula duration and several two-way interactions influenced S2, highlighting the complexity of postcopulatory processes and sperm storage. Importantly, S2 and P2 were strongly correlated. Manipulation of the timing of oviposition strongly influenced observed sperm-storage patterns, with higher S2 when females laid no eggs before being sacrificed than when they oviposited between copulations, an observation consistent with adaptive plasticity in insemination. Our results identified multiple factors influencing sperm storage, nevertheless suggesting that the proportion of stored sperm is strongly linked to paternity (i.e., a fair raffle). Even more detailed data in this vein are needed to evaluate the general importance of sperm competition relative to cryptic female choice in postcopulatory sexual selection.
Collapse
Affiliation(s)
- Marco Demont
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
- Department of Biology and Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Paul I Ward
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
| | - Oliver Y Martin
- Department of Biology and Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Luc F Bussière
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel Winterthurerstrasse 190, Zurich, Switzerland
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, UK
- Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Matsumura Y, Gürke S, Tramsen HT, Gorb SN. 3D printed spermathecae as experimental models to understand sperm dynamics in leaf beetles. BMC ZOOL 2020. [DOI: 10.1186/s40850-020-00058-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Postcopulatory mate choice occurs ubiquitously in the animal kingdom. However, it is usually a major challenge to visualise the process taking place in a body. This fact makes it difficult to understand the mechanisms of the process. By focusing on the shape of female sperm storage organs (spermathecae), we aimed to elucidate their functional morphology using six representative beetle species and to simulate sperm dynamics in artificial spermathecae with different structural features.
Results
Morphology and material gradients were studied using micro-computed tomography (μCT) and confocal laser scanning microscopy. This study shows a diversity of external and internal structures of the spermathecae among species. Despite the diversity, all species possess a common pumping region, which is composed of a sclerotised chamber, muscles and a resilin-enriched region. By focusing on the species Agelastica alni, whose spermatheca is relatively simple in shape with an internal protuberance, we simulated sperm dynamics by establishing a fabrication method to create enlarged, transparent, flexible and low-cost 3D models of biological structures based on μCT data. This experiment shows that the internal protuberance in the species functions as an efficient mixing device of stored sperm.
Conclusions
The observed spermathecal musculature implies that the sclerotised chamber of the spermatheca with muscles works as a pumping organ. Our fluid dynamics tests based on 3D printed spermathecae show that a tiny structural difference causes entirely different fluid dynamics in the spermatheca models. This result suggests that structural variations of the spermatheca strongly affect sperm dynamics. However, fluid dynamics tests still require essential measurements including sperm viscosity and the velocity of pumping cycles of the spermatheca.
Collapse
|
9
|
Civetta A, Ranz JM. Genetic Factors Influencing Sperm Competition. Front Genet 2019; 10:820. [PMID: 31572439 PMCID: PMC6753916 DOI: 10.3389/fgene.2019.00820] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Females of many different species often mate with multiple males, creating opportunities for competition among their sperm. Although originally unappreciated, sperm competition is now considered a central form of post-copulatory male–male competition that biases fertilization. Assays of differences in sperm competitive ability between males, and interactions between females and males, have made it possible to infer some of the main mechanisms of sperm competition. Nevertheless, classical genetic approaches have encountered difficulties in identifying loci influencing sperm competitiveness while functional and comparative genomic methodologies, as well as genetic variant association studies, have uncovered some interesting candidate genes. We highlight how the systematic implementation of approaches that incorporate gene perturbation assays in experimental competitive settings, together with the monitoring of progeny output or sperm features and behavior, has allowed the identification of genes unambiguously linked to sperm competitiveness. The emerging portrait from 45 genes (33 from fruit flies, 8 from rodents, 2 from nematodes, and 2 from ants) is their remarkable breadth of biological roles exerted through males and females, the non-preponderance of sperm genes, and their overall pleiotropic nature.
Collapse
Affiliation(s)
- Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| |
Collapse
|
10
|
Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat Commun 2018; 9:4771. [PMID: 30425248 PMCID: PMC6233181 DOI: 10.1038/s41467-018-07273-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022] Open
Abstract
Climate change is affecting biodiversity, but proximate drivers remain poorly understood. Here, we examine how experimental heatwaves impact on reproduction in an insect system. Male sensitivity to heat is recognised in endotherms, but ectotherms have received limited attention, despite comprising most of biodiversity and being more influenced by temperature variation. Using a flour beetle model system, we find that heatwave conditions (5 to 7 °C above optimum for 5 days) damaged male, but not female, reproduction. Heatwaves reduce male fertility and sperm competitiveness, and successive heatwaves almost sterilise males. Heatwaves reduce sperm production, viability, and migration through the female. Inseminated sperm in female storage are also damaged by heatwaves. Finally, we discover transgenerational impacts, with reduced reproductive potential and lifespan of offspring when fathered by males, or sperm, that had experienced heatwaves. This male reproductive damage under heatwave conditions provides one potential driver behind biodiversity declines and contractions through global warming.
Collapse
|
11
|
Lüpold S, Pitnick S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 2018; 155:R229-R243. [DOI: 10.1530/rep-17-0536] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Sperm morphological variation has attracted considerable interest and generated a wealth of predominantly descriptive studies over the past three centuries. Yet, apart from biophysical studies linking sperm morphology to swimming velocity, surprisingly little is known about the adaptive significance of sperm form and the selective processes underlying its tremendous diversification throughout the animal kingdom. Here, we first discuss the challenges of examining sperm morphology in an evolutionary context and why our understanding of it is far from complete. Then, we review empirical evidence for how sexual selection theory applies to the evolution of sperm form and function, including putative secondary sexual traits borne by sperm.
Collapse
|
12
|
Rafter MA, McCulloch GA, Daglish GJ, Walter GH. Progression of phosphine resistance in susceptible Tribolium castaneum (Herbst) populations under different immigration regimes and selection pressures. Evol Appl 2017; 10:907-918. [PMID: 29151882 PMCID: PMC5680416 DOI: 10.1111/eva.12493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/02/2017] [Indexed: 02/04/2023] Open
Abstract
Insecticide resistance is an escalating global issue for a wide variety of agriculturally important pests. The genetic basis and biochemical mechanisms of resistance are well characterized in some systems, but little is known about the ecological aspects of insecticide resistance. We therefore designed a laboratory experiment to quantify the progression of phosphine resistance in Tribolium castaneum populations subject to different immigration regimes and selection pressures. Mated resistant females were added to originally susceptible populations under two distinct migration rates, and in addition, half of the populations in each migration treatment were exposed to selection pressures from phosphine fumigation. The progression of phosphine resistance was assessed by screening beetles for the resistance allele at rph2. Phosphine resistance increased slowly in the low migration treatment and in the absence of selection, as expected. But at the higher migration rate, the increase in frequency of the resistance allele was lower than predicted. These outcomes result from the high levels of polyandry known in T. castaneum females in the laboratory, because most of the Generation 1 offspring (86%) were heterozygous for the rph2 allele, probably because resistant immigrant females mated again on arrival. Phosphine resistance was not fixed by fumigation as predicted, perhaps because susceptible gametes and eggs survived fumigation within resistant females. In terms of phosphine resistance progression in populations exposed to selection, the effect of fumigation negated the difference in migration rates. These results demonstrate how species‐specific traits relating to the mating system may shape the progression of insecticide resistance within populations, and they have broad implications for the management of phosphine resistance in T. castaneum in the field. We specify and discuss how these mating system attributes need to be accounted for when developing guidelines for resistance management.
Collapse
Affiliation(s)
- Michelle A Rafter
- School of Biological Sciences The University of Queensland Brisbane QLD Australia
| | - Graham A McCulloch
- School of Biological Sciences The University of Queensland Brisbane QLD Australia
| | - Gregory J Daglish
- Department of Agriculture and Fisheries EcoSciences Precinct Brisbane QLD Australia
| | - Gimme H Walter
- School of Biological Sciences The University of Queensland Brisbane QLD Australia
| |
Collapse
|
13
|
Godwin JL, Vasudeva R, Michalczyk Ł, Martin OY, Lumley AJ, Chapman T, Gage MJG. Experimental evolution reveals that sperm competition intensity selects for longer, more costly sperm. Evol Lett 2017; 1:102-113. [PMID: 30283643 PMCID: PMC6089504 DOI: 10.1002/evl3.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
It is the differences between sperm and eggs that fundamentally underpin the differences between the sexes within reproduction. For males, it is theorized that widespread sperm competition leads to selection for investment in sperm numbers, achieved by minimizing sperm size within limited resources for spermatogenesis in the testis. Here, we empirically examine how sperm competition shapes sperm size, after more than 77 generations of experimental selection of replicate lines under either high or low sperm competition intensities in the promiscuous flour beetle Tribolium castaneum. After this experimental evolution, populations had diverged significantly in their sperm competitiveness, with sperm in ejaculates from males evolving under high sperm competition intensities gaining 20% greater paternity than sperm in ejaculates from males that had evolved under low sperm competition intensity. Males did not change their relative investment into sperm production following this experimental evolution, showing no difference in testis sizes between high and low intensity regimes. However, the more competitive males from high sperm competition intensity regimes had evolved significantly longer sperm and, across six independently selected lines, there was a significant association between the degree of divergence in sperm length and average sperm competitiveness. To determine whether such sperm elongation is costly, we used dietary restriction experiments, and revealed that protein-restricted males produced significantly shorter sperm. Our findings therefore demonstrate that sperm competition intensity can exert positive directional selection on sperm size, despite this being a costly reproductive trait.
Collapse
Affiliation(s)
- Joanne L. Godwin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Ramakrishnan Vasudeva
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | | | | | - Alyson J. Lumley
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Matthew J. G. Gage
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
14
|
Parker DJ, Zaborowska J, Ritchie MG, Vahed K. Paternity analysis of wild-caught females shows that sperm package size and placement influence fertilization success in the bushcricketPholidoptera griseoaptera. Mol Ecol 2017; 26:3050-3061. [DOI: 10.1111/mec.14089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Darren James Parker
- Centre for Biological Diversity; University of St Andrews; St Andrews KY16 9TH UK
- Department of Ecology and Evolution; University of Lausanne; Biophore Lausanne 1015 Switzerland
| | - Julia Zaborowska
- Centre for Biological Diversity; University of St Andrews; St Andrews KY16 9TH UK
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
- Institute of Environmental Biology; Adam Mickiewicz University in Poznań; Umultowska 89 61-614 Poznań Poland
| | | | - Karim Vahed
- Environmental Sustainability Research Centre; University of Derby; Kedleston Road Derby DE22 1GB UK
| |
Collapse
|
15
|
Postmating Female Control: 20 Years of Cryptic Female Choice. Trends Ecol Evol 2017; 32:368-382. [PMID: 28318651 PMCID: PMC5511330 DOI: 10.1016/j.tree.2017.02.010] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
Abstract
Cryptic female choice (CFC) represents postmating intersexual selection arising from female-driven mechanisms at or after mating that bias sperm use and impact male paternity share. Although biologists began to study CFC relatively late, largely spurred by Eberhard's book published 20 years ago, the field has grown rapidly since then. Here, we review empirical progress to show that numerous female processes offer potential for CFC, from mating through to fertilization, although seldom has CFC been clearly demonstrated. We then evaluate functional implications, and argue that, under some conditions, CFC might have repercussions for female fitness, sexual conflict, and intersexual coevolution, with ramifications for related evolutionary phenomena, such as speciation. We conclude by identifying directions for future research in this rapidly growing field.
Collapse
|