1
|
Zu G, Sun Z, Chen Y, Geng J, Lv J, You Z, Jiang C, Sheng Q, Nie Z. The acetyltransferase BmCBP changes the acetylation modification of BmSP3 and affects its protein expression in silkworm, Bombyx mori. Mol Biol Rep 2023; 50:8509-8521. [PMID: 37642757 DOI: 10.1007/s11033-023-08699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Protein acetylation is an important post-translational modification (PTM) that widely exists in organisms. As a reversible PTM, acetylation modification can regulate the function of proteins with high efficiency. In the previous study, the acetylation sites of silkworm proteins were identified on a large scale by nano-HPLC/MS/MS (nanoscale high performance liquid chromatography-tandem secondary mass spectrometry), and a total of 11 acetylation sites were discovered on Bombyx mori nutrient-storage protein SP3 (BmSP3). The purpose of this study was to investigate the effect of acetylation level on BmSP3. METHODS AND RESULTS In this study, the acetylation of BmSP3 was further verified by immunoprecipitation (IP) and Western blotting. Then, it was confirmed that acetylation could up-regulate the expression of BmSP3 by improving its protein stability in BmN cells. Co-IP and RNAi experiments showed acetyltransferase BmCBP could bind to BmSP3 and catalyze its acetylation modification, then regulate the expression of BmSP3. Furthermore, the knock-down of BmCBP could improve the ubiquitination level of BmSP3. Both acetylation and ubiquitination occur on the side chain of lysine residues, therefore, we speculated that the acetylation of BmSP3 catalyzed by BmCBP could competitively inhibit its ubiquitination modification and improve its protein stability by inhibiting ubiquitin-mediated proteasome degradation pathway, and thereby increase the expression and intracellular accumulation. CONCLUSIONS BmCBP catalyzes the acetylation of BmSP3 and may improve the stability of BmSP3 by competitive ubiquitination. This conclusion provides a new functional basis for the extensive involvement of acetylation in the regulation of nutrient storage and utilization in silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Guowei Zu
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zihan Sun
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yanmei Chen
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jiasheng Geng
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| |
Collapse
|
2
|
Stuart AKDC, Furuie JL, Cataldi TR, Stuart RM, Zawadneak MAC, Labate CA, Pimentel IC. Metabolomics of the interaction between a consortium of entomopathogenic fungi and their target insect: Mechanisms of attack and survival. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105369. [PMID: 36963938 DOI: 10.1016/j.pestbp.2023.105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
One of the most concerning pests that attack strawberries in Brazil is Duponchelia fovealis (Zeller), a non-native moth with no registered control methods to date. Our group recently observed that a fungal consortium formed by two strains of Beauveria bassiana (Balsamo) increased the mortality of D. fovealis more than inoculation with each strain on its own. However, the molecular interaction between the fungal consortium and the caterpillars is unknown. Thus, in this work, we sought to pioneer the evaluation of the molecular interaction between a fungal consortium of B. bassiana and D. fovealis caterpillars. We aimed to understand the biocontrol process involved in this interaction and the defense system of the caterpillar. Seven days after D. fovealis were inoculated with the consortium, the dead and surviving caterpillars were analyzed using GC-MS and LC-MS. Some of the metabolites identified in dead caterpillars have primarily antioxidant action. Other metabolites may have insecticidal potential, such as diltiazem-like and tamsulosin-like compounds, as well as 2,5-dimethoxymandelic acid. In surviving caterpillars, the main mechanisms are pro-inflammatory from 2-Palmitoylglycerol metabolite and the antifungal action of the metabolite Aegle marmelos Alkaloid-C. The metabolites identified in dead caterpillars may explain the increased mortality caused by the consortium due to its antioxidant mechanism, which can suppress the caterpillars' immune system, and insecticide action. In surviving caterpillars, the main resistance mechanisms may involve the stimulus to the immunity and antifungal action.
Collapse
Affiliation(s)
- Andressa Katiski da Costa Stuart
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Jason Lee Furuie
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Thais Regiani Cataldi
- Laboratório de Genética de Plantas Max Feffer, Departamento de Genética, Escola Superior de Agronomia Luiz de Queiroz - Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Rodrigo Makowiecky Stuart
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Maria Aparecida Cassilha Zawadneak
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Programa de Pós-graduação em Agronomia Produção Vegetal, Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Carlos Alberto Labate
- Laboratório de Genética de Plantas Max Feffer, Departamento de Genética, Escola Superior de Agronomia Luiz de Queiroz - Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Ida Chapaval Pimentel
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
3
|
Chen Y, Lv J, Zu G, Yang F, Geng J, You Z, Jiang C, Sheng Q, Nie Z. BmCBP Catalyzes the Acetylation of BmApoLp-II Protein and Regulates Its Stability in Silkworm, Bombyx mori. INSECTS 2023; 14:309. [PMID: 37103124 PMCID: PMC10146067 DOI: 10.3390/insects14040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Acetylation is an important and reversible post-translational modification (PTM) of protein, which is involved in many cellular physiological processes. In previous studies, lots of nutrient storage proteins were found to be highly acetylated in silkworms, and acetylation can improve the stability of these proteins. However, the related acetyltransferase was not involved. In the present work, a Bombyx mori nutrient storage protein, apolipophorin II (BmApoLp-II), was further confirmed to be acetylated, and the acetylation could improve its protein expression. Furthermore, RNAi and Co-IP showed that the acetyltransferase BmCBP was found to catalyze the acetylation modification of BmApoLp-II, and thus affect its protein expression. Meanwhile, it was proved that acetylation could improve the stability of the BmApoLp-II protein by completing its ubiquitination. These results lay a foundation for further study on the mechanism of regulating nutrition storage and hydrolysis utilization of storage proteins by BmCBP and the acetylation in the silkworm Bombyx mori.
Collapse
|
4
|
Tao S, Wang J, Liu M, Sun F, Li B, Ye C. Haemolymph metabolomic differences in silkworms (Bombyx mori L.) under mulberry leaf and two artificial diet rearing methods. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21851. [PMID: 34877697 DOI: 10.1002/arch.21851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The new technology of silkworm (Bombyx mori L.) artificial feed breeding has many characteristics and advantages. This study assessed silkworm rearing with mulberry leaf at all instars (MF) as the control, and used metabolomics to explore the differences in haemolymph metabolism of fifth instar silkworms under two modes of rearing with an artificial diet at all instars (AF) and rearing with an artificial diet during first to third instars and mulberry leaf during the fourth and fifth instars (AMF). The results show that, compared with silkworms of the MF group, the amount and fold change of various metabolites were higher in the haemolymph of AF group silkworms, and the metabolism of amino acids and uric acid, carbohydrates, lipids, and vitamins were changed. These changes may be the reasons for the poor performance of the AF silkworms. However, the amount and fold change of the various metabolites of silkworms in the AMF group were lower, and some metabolic pathways were more active. The amount of material and energy supply were greater. These changes could explain the high efficiency growth of body weight of silkworms after the conversion from artificial diet rearing to mulberry leaf rearing. These findings provide an important theoretical basis for the optimisation of artificial diet rearing technology for silkworms.
Collapse
Affiliation(s)
- Shanshan Tao
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Minghui Liu
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fan Sun
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Bing Li
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chongjun Ye
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
5
|
Sun Z, Ma Y, Liu Y, Lv J, Wang D, You Z, Jiang C, Sheng Q, Nie Z. The Acetylation Modification of SP1 Regulates the Protein Stability in Silkworm. Appl Biochem Biotechnol 2021; 194:1621-1635. [PMID: 34826090 DOI: 10.1007/s12010-021-03757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Acetylation is a highly conservative and reversible post-translational modification. Acetylation modification can regulate gene expression by altering protein function and is widely identified in an increasing number of species. Previously, the acetylated proteome of silkworm was identified by combining acetylated polypeptide enrichment with nano-HPLC/MS/MS; the identification revealed that the SP proteins (SPs) were high acetylated. In this study, the acetylation of SP1, one of the SPs, was further confirmed using immunoprecipitation (IP) and Western blotting. Then, we found the acetylation could upregulate SP1 protein expression by enhancing the protein stability. Further research found that the acetylation of SP1 protein can competitively inhibit its ubiquitination and thus improve the stability and cell accumulation of SP1 protein by inhibiting the ubiquitin-mediated proteasome degradation pathway. This result provides a basis for acetylation to regulate the nutrient storage and utilization of silkworm.
Collapse
Affiliation(s)
- Zihan Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yafei Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yue Liu
- Zhejiang Economic & Trade Polytechnic, Hangzhou, 310018, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Zhu Y, Hu M, Ngowo J, Gao X, Chen X, Yan H, Yu W. Deacetylation of BmAda3 is required for cell apoptosis caused by Bombyx mori nucleopolyhedrovirus infection. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21838. [PMID: 34350621 DOI: 10.1002/arch.21838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Silkworm is not only an ideal insect model with a biological significance, but it is also crucially important in sericulture and bioreactors. Bombyx mori nucleopolyhedrovirus (BmNPV) is a principal pathogen of silkworm. However, the molecular mechanism underlying BmNPV invasion is still unclear. Based on our previous acetylome research findings of B. mori after BmNPV infection, here, we focused on silkworm alteration/deficiency in activation-3 (BmAda3). The acetylation of K124 and K128 were significantly reduced (0.66-fold) upon the virus challenge. Due to the interaction between Ada3 and P53, acetylation-mimic K124Q/K128Q and deacetylation-mimic K124R/K128R mutants of BmAda3 were constructed to explore the roles exerted by the acetylation modification of BmAda3 on P53. Yeast two-hybrid and IP results revealed that both BmAda3 and its deacetylation mutants (K124R/K128R) interacted with P53. Interestingly, we found that the deacetylation mutants (K124R/K128R) of BmAda3 significantly promoted the stability of P53. Since P53 is a proapoptotic factor, cell apoptosis was detected. We established that the deacetylation of BmAda3 at K124/K128 facilitated cellular apoptosis during BmNPV infection. Finally, viral proliferation was analyzed, and the results indicated that virus generation was reduced by K124/K128 deacetylation. Our report, based on the deacetylation of two lysine sites 124/128 of BmAda3, shows possible regulatory pathways of BmNPV proliferation and provides novel insights into the development of antiviral agents.
Collapse
Affiliation(s)
- Yajie Zhu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Miao Hu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Jonas Ngowo
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Xu Gao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Xi Chen
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Huihui Yan
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Lv J, Li S, Liu Y, Sun Z, Wang D, You Z, Jiang C, Sheng Q, Nie Z. The acetylation modification regulates the stability of Bm30K-15 protein and its mechanism in silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21823. [PMID: 34075635 DOI: 10.1002/arch.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The 30 K proteins are the major silkworm hemolymph proteins and are involved in a variety of physiological processes, such as nutrient and energy storage, embryogenesis, immune response, and inhibition of apoptosis. The Bm30K-15 protein is one of the 30 K proteins and is abundant in the hemolymph of fifth instar silkworm larva. We previously found that the Bm30K-15 protein can be acetylated. In the present study, we found that acetylation can improve the protein stability of Bm30K-15. Further exploration confirmed that the increase in protein stability by acetylation was caused by competition between acetylation and ubiquitination. In summary, these findings aim to provide insight into the effect of acetylation modification on the protein level and stability of the Bm30K-15 and the possible molecular mechanism of its existence in silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shouliang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yue Liu
- Zhejiang Institute of Economics and Trade, Hangzhou, China
| | - Zihan Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
8
|
Gholizadeh E, Karbalaei R, Khaleghian A, Salimi M, Gilany K, Soliymani R, Tanoli Z, Rezadoost H, Baumann M, Jafari M, Tang J. Identification of Celecoxib-Targeted Proteins Using Label-Free Thermal Proteome Profiling on Rat Hippocampus. Mol Pharmacol 2021; 99:308-318. [PMID: 33632781 DOI: 10.1124/molpharm.120.000210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
Celecoxib, or Celebrex, a nonsteroidal anti-inflammatory drug, is one of the most common medicines for treating inflammatory diseases. Recently, it has been shown that celecoxib is associated with implications in complex diseases, such as Alzheimer disease and cancer as well as with cardiovascular risk assessment and toxicity, suggesting that celecoxib may affect multiple unknown targets. In this project, we detected targets of celecoxib within the nervous system using a label-free thermal proteome profiling method. First, proteins of the rat hippocampus were treated with multiple drug concentrations and temperatures. Next, we separated the soluble proteins from the denatured and sedimented total protein load by ultracentrifugation. Subsequently, the soluble proteins were analyzed by nano-liquid chromatography tandem mass spectrometry to determine the identity of the celecoxib-targeted proteins based on structural changes by thermal stability variation of targeted proteins toward higher solubility in the higher temperatures. In the analysis of the soluble protein extract at 67°C, 44 proteins were uniquely detected in drug-treated samples out of all 478 identified proteins at this temperature. Ras-associated binding protein 4a, 1 out of these 44 proteins, has previously been reported as one of the celecoxib off targets in the rat central nervous system. Furthermore, we provide more molecular details through biomedical enrichment analysis to explore the potential role of all detected proteins in the biologic systems. We show that the determined proteins play a role in the signaling pathways related to neurodegenerative disease-and cancer pathways. Finally, we fill out molecular supporting evidence for using celecoxib toward the drug-repurposing approach by exploring drug targets. SIGNIFICANCE STATEMENT: This study determined 44 off-target proteins of celecoxib, a nonsteroidal anti-inflammatory and one of the most common medicines for treating inflammatory diseases. It shows that these proteins play a role in the signaling pathways related to neurodegenerative disease and cancer pathways. Finally, the study provides molecular supporting evidence for using celecoxib toward the drug-repurposing approach by exploring drug targets.
Collapse
Affiliation(s)
- Elham Gholizadeh
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Reza Karbalaei
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Ali Khaleghian
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Mona Salimi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Kambiz Gilany
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Rabah Soliymani
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Ziaurrehman Tanoli
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Hassan Rezadoost
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Marc Baumann
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Mohieddin Jafari
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Jing Tang
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| |
Collapse
|
9
|
Mao F, Chen X, Ngowo J, Zhu Y, Lei J, Gao X, Miao M, Quan Y, Yu W. Deacetylation of HSC70-4 Promotes Bombyx mori Nucleopolyhedrovirus Proliferation via Proteasome-Mediated Nuclear Import. Front Physiol 2021; 12:609674. [PMID: 33679433 PMCID: PMC7935516 DOI: 10.3389/fphys.2021.609674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/29/2021] [Indexed: 01/18/2023] Open
Abstract
Silkworm (Bombyx mori) is a model organism with great agricultural economic value that plays a crucial role in biological studies. B. mori nucleopolyhedrovirus (BmNPV) is a major viral pathogen found in silkworms, which leads to huge silk loss annually. In a recent lysine acetylome of silkworm infected with BmNPV, we focused on the heat shock cognate protein 70-4 (HSC70-4) lysine acetylation change due to the consequent nuclear accumulation and viral structure assembly. In this study, the genome replication, proliferation, and production of budded viruses (BVs) were arrested by HSP/HSC70 inhibitor treatment. However, HSC70-4 overexpression enhanced BmNPV reproduction. Furthermore, site-direct mutagenesis for acetylated mimic (K/Q) or deacetylated mimic (K/R) mutants of HSC70-4 demonstrated that lysine 77 (K77) deacetylation promotes HSC70-4 stability, viral DNA duplication, and HSC70-4 nuclear entry upon BmNPV challenge, and the nuclear propulsion of HSC70-4 after viral stimulus might be dependent on the interaction with the carboxyl terminus of HSC70-interacting protein (CHIP, an E3 ubiquitin ligase), followed by ubiquitin-proteasome system assistance. In this study, single lysine 77 deacetylation of HSC70-4 was deemed a part of the locomotive pathway for facilitating BmNPV proliferation and provided novel insights into the antiviral strategic development.
Collapse
Affiliation(s)
- Fuxiang Mao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Xi Chen
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Jonas Ngowo
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Yajie Zhu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Jihai Lei
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Xu Gao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Meng Miao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| |
Collapse
|
10
|
Kirfel P, Vilcinskas A, Skaljac M. Lysine Acetyltransferase p300/CBP Plays an Important Role in Reproduction, Embryogenesis and Longevity of the Pea Aphid Acyrthosiphon pisum. INSECTS 2020; 11:E265. [PMID: 32357443 PMCID: PMC7290403 DOI: 10.3390/insects11050265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
CREB-binding protein (p300/CBP) is a universal transcriptional co-regulator with lysine acetyltransferase activity. Drosophila melanogaster p300/CBP is a well-known regulator of embryogenesis, and recent studies in beetles and cockroaches have revealed the importance of this protein during post-embryonic development and endocrine signaling. In pest insects, p300/CBP may therefore offer a useful target for control methods based on RNA interference (RNAi). We investigated the role of p300/CBP in the pea aphid (Acyrthosiphon pisum), a notorious pest insect used as a laboratory model for the analysis of complex life-history traits. The RNAi-based attenuation of A. pisum p300/CBP significantly reduced the aphid lifespan and number of offspring, as well as shortening the reproductive phase, suggesting the manipulation of this gene contributes to accelerated senescence. Furthermore, injection of p300/CBP dsRNA also reduced the number of viable offspring and increased the number of premature nymphs, which developed in abnormally structured ovaries. Our data confirm the evolutionarily conserved function of p300/CBP during insect embryogenesis and show that the protein has a critical effect on longevity, reproduction and development in A. pisum. The potent effect of p300/CBP silencing indicates that this regulatory protein is an ideal target for RNAi-based aphid control.
Collapse
Affiliation(s)
- Phillipp Kirfel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
| |
Collapse
|
11
|
Ma Y, Wu C, Liu J, Liu Y, Lv J, Sun Z, Wang D, Jiang C, Sheng Q, You Z, Nie Z. The stability and antiapoptotic activity of Bm30K-3 can be improved by lysine acetylation in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21649. [PMID: 31777104 DOI: 10.1002/arch.21649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Acetylation is an important, highly conserved, and reversible post-translational modification of proteins. Previously, we showed by nano-HPLC/MS/MS that many nutrient storage proteins in the silkworm are acetylated. Among these proteins, most of the known 30K proteins were shown to be acetylated, including 23 acetylated 30K proteins containing 49 acetylated sites (Kac), indicating the importance of the acetylation of 30K proteins in silkworm. In this study, Bm30K-3, a 30K protein containing three Kac sites, was further assessed in functional studies of its acetylation. Increasing the level of Bm30K-3 acetylation by adding the deacetylase inhibitor trichostatin A (TSA) increased the levels of this protein and further inhibited cellular apoptosis induced by H2 O2 . In contrast, decreasing the level of acetylation by adding the acetylase inhibitor C646 could reduce the level of Bm30K-3 and increase H2 O2 -induced apoptosis. Subsequently, BmN cells were treated with CHX and MG132, and increasing the acetylation level using TSA was shown to inhibit protein degradation and improve the stability of Bm30K-3. Furthermore, the acetylation of Bm30K-3 could compete with its ability to be ubiquitinated, suggesting that acetylation could inhibit the ubiquitin-mediated proteasome degradation pathway, improving the stability and accumulation of proteins in cells. These results further indicate that acetylation might regulate nutrition storage and utilization in Bombyx mori, which requires further study.
Collapse
Affiliation(s)
- Yafei Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chengcheng Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiahan Liu
- School of Forestry and Biotechnology, Zhejiang A & F University, Linan, China
| | - Yue Liu
- Zhejiang Economic & Trade Polytechnic, Hangzhou, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zihan Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
12
|
Yang F, Zhu B, Liu J, Liu Y, Jiang C, Sheng Q, Qiu J, Nie Z. The effect of acetylation on the protein stability of BmApoLp-III in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2020; 29:104-111. [PMID: 31390480 DOI: 10.1111/imb.12613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/26/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Acetylation is an important, reversible posttranslational modification to a protein. In a previous study, we found that there were a large number of acetylated sites in various nutrient storage proteins of the silkworm haemolymph. In this study, we confirmed that acetylation can affect the stability of nutrient storage protein Bombyx mori apolipophorin-III (BmApoLp-III). First, the expression of BmApoLp-III could be upregulated when BmN cells were treated with the deacetylase inhibitor panobinostat (LBH589); similarly, the expression was downregulated when the cells were treated with the acetylase inhibitor C646. Furthermore, the increase in acetylation by LBH589 could inhibit the degradation and improve the accumulation of BmApoLp-III in BmN cells treated with cycloheximide and MG132 respectively. Moreover, we found that an increase in acetylation could decrease the ubiquitination of BmApoLp-III and vice versa; therefore, we predicted that acetylation could improve the stability of BmApoLp-III by competing for ubiquitination and inhibiting the protein degradation pathway mediated by ubiquitin. Additionally, BmApoLp-III had an antiapoptosis function that increased after LBH589 treatment, which might have been due to the improved protein stability after acetylation. These results have laid the foundation for further study on the mechanism of acetylation in regulating the storage and utilization of silkworm nutrition.
Collapse
Affiliation(s)
- F Yang
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - B Zhu
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - J Liu
- School of Forestry and Biotechnology, Zhejiang A&F University, Linan, China
| | - Y Liu
- Zhejiang Economic & Trade Polytechnic, Hangzhou, China
| | - C Jiang
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Q Sheng
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - J Qiu
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Z Nie
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
13
|
Zhou H, Cheng X, Xu X, Jiang T, Zhou H, Sheng Q, Nie Z. Cloning, expression profiling, and acetylation identification of alpha-tubulin N-acetyltransferase 1 from Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21463. [PMID: 29569264 DOI: 10.1002/arch.21463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself.
Collapse
Affiliation(s)
- Huaixiang Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Xusheng Cheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Xiaoyuan Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Tianlong Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Haimeng Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Comprehensive Profiling of Lysine Acetylome in Baculovirus Infected Silkworm (Bombyx mori) Cells. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/01/2017] [Indexed: 12/12/2022]
|