1
|
Wu H, Cui Z, Huang X, Dhiloo KH, Kong F, Wang Z, Liu Y. Spontaneous Color Preferences and Associative Learning in Protaetia brevitarsis (Coleoptera: Scarabaeidae). INSECTS 2024; 15:780. [PMID: 39452356 PMCID: PMC11508643 DOI: 10.3390/insects15100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Color vision, which varies among species, plays an important role in foraging, mating, and habitat selection among insects. Protaetia brevitarsis (Coleoptera: Scarabaeidae, Lewis) is an omnivorous beetle that damages both crops and fruit. Here, to understand the effect of vision and olfaction in host selection, experiments were conducted on the spectral wavelength preference, color preference, and associative learning ability of adult P. brevitarsis using LED lights and grapes. In our experiments, adults showed the strongest spontaneous preference toward the red spectrum, particularly 730 nm. Non-preferred lights were used to train adults with a food reward (grapes). Green-trained adults had an increasing tendency to prefer green light, and blue-trained adults had a clear preference for blue light. Furthermore, adults significantly preferred red grapes in the absence of olfactory cues, but their selectivity for grapes differed in the presence of olfactory cues, indicating that vision was not the only factor in foraging decisions, but that olfactory cues also influenced their decision making. The results lay the groundwork for revealing their host localization mechanism and provide promising avenues for biological control in the field.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhuangzhi Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Khalid Hussain Dhiloo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Fanfang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhongyue Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Wen C, Pan Z, Liang S, Shen L, Wen X, Wang C. Fine Structure of the Visual System of Arge similis (Hymenoptera, Argidae). INSECTS 2022; 13:152. [PMID: 35206725 PMCID: PMC8880150 DOI: 10.3390/insects13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022]
Abstract
External morphology and ultrastructure of the visual system of Arge similis (Vollenhoven, 1860) adults were investigated by light microscopy, scanning electron microscopy, and transmission electron microscopy. Each compound eye contains 2022 ± 89 (mean ± SE) facets in males and 2223 ± 52 facets in females. Arge similis has an apposition kind of compound eye composed of a cornea, a crystalline cone of four cone cells, and a centrally fused rhabdom made up of the rhabdomeres of eight large retinular cells. Each crystalline cone is surrounded by primary and secondary pigment cells with black spherical screening pigment granules measuring 0.60 ± 0.02 and 0.41 ± 0.01 μm in diameter, respectively. Based on our findings, the compound eye of A. similis can be expected to exhibit high adaptability to light intensity changes.
Collapse
Affiliation(s)
| | | | | | | | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.W.); (Z.P.); (S.L.); (L.S.)
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.W.); (Z.P.); (S.L.); (L.S.)
| |
Collapse
|
3
|
Bian L, Cai XM, Luo ZX, Li ZQ, Chen ZM. Foliage Intensity is an Important Cue of Habitat Location for Empoasca onukii. INSECTS 2020; 11:insects11070426. [PMID: 32659987 PMCID: PMC7412280 DOI: 10.3390/insects11070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 11/02/2022]
Abstract
For many herbivorous insects, vision is more important than olfaction in the prealighting stage of host habitat location. Tea leafhoppers, Empoasca onukii (Hemiptera, Cicadellidae), are serious pests that preferentially inhabit the tender leaves of tea plants across China. Here, we investigated whether tea leafhoppers could distinguish foliage colors associated with different leaf ages and use this visual cue to guide suitable habitat location from short distances. Similar to honeybees, the adult E. onukii has an apposition type of compound eye, and each ommatidium has eight retinular cells, in which three spectral types of photoreceptors are distributed, with peak sensitivities at 356 nm (ultraviolet), 435 nm (blue), and 542 nm (green). Both changes in spectral intensity and hue of reflectance light of the host foliage were correlated with varying leaf age, and the intensity linearly decreased with increasing leaf age. Behavioral responses also showed that adult E. onukii could discriminate between the simulated colors of host foliage at different leaf ages without olfactory stimuli and selected the bright colors that strongly corresponded to those of tender leaves. The results suggest that, compared with the spectral composition (hue), the intensity of light reflectance from leaves at different ages is more important for adult leafhoppers when discriminating host foliage and could guide them to tender leaves at the top of tea shoots.
Collapse
Affiliation(s)
- Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China; (L.B.); (X.M.C.); (Z.X.L.); (Z.Q.L.)
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Xiao Ming Cai
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China; (L.B.); (X.M.C.); (Z.X.L.); (Z.Q.L.)
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Zong Xiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China; (L.B.); (X.M.C.); (Z.X.L.); (Z.Q.L.)
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Zhao Qun Li
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China; (L.B.); (X.M.C.); (Z.X.L.); (Z.Q.L.)
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Zong Mao Chen
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China; (L.B.); (X.M.C.); (Z.X.L.); (Z.Q.L.)
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- Correspondence: ; Tel.: +86-571-86650100
| |
Collapse
|
4
|
Do Grapholita funebrana Infestation Rely on Specific Plum Fruit Features? INSECTS 2019; 10:insects10120444. [PMID: 31835902 PMCID: PMC6955919 DOI: 10.3390/insects10120444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/28/2022]
Abstract
The effective control of the plum fruit moth, Grapholita funebrana (Lepidoptera: Tortricidae) still represents a difficult challenge for organic plum farming. Little information is available on the susceptibility of plum cultivars to this moth pest. We investigated the roles of several fruit parameters (i.e., shape, volume, hardness, fruit colour, and physiochemical properties) on the susceptibility of four different plum cultivars (Angeleno, Friar, President and Stanley) to G. funebrana attack. Field data demonstrated the importance of some fruit parameters (i.e., elongation index, sugar degree, titratable acidity, cover colour percentage) on susceptibility to G. funebrana infestation. Under laboratory conditions, colour and shape had a significant role in determining the time spent on false fruits, i.e., female moths preferred yellow and rounded fruits over elongated red or green fruits. Angeleno (yellow and rounded fruits) and Stanley (green and elongated fruits) were the most and least susceptible cultivars, respectively. Overall, this study adds useful knowledge about plum cultivar susceptibility to G. funebrana. Information reported here may be useful to improve integrated pest management strategies both in conventional and organic orchards because the use of less susceptible cultivars may reduce insecticidal treatments, limiting the development of resistance in target insects and the harmful side effects on beneficial species.
Collapse
|
5
|
Henze MJ, Lind O, Mappes J, Rojas B, Kelber A. An aposematic colour‐polymorphic moth seen through the eyes of conspecifics and predators – Sensitivity and colour discrimination in a tiger moth. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Miriam J. Henze
- Lund Vision GroupDepartment of BiologyLund University Lund Sweden
| | - Olle Lind
- Department of PhilosophyCognitive ScienceLund University Lund Sweden
| | - Johanna Mappes
- Centre of Excellence in Biological InteractionsUniversity of Jyväskylä Jyväskylä Finland
| | - Bibiana Rojas
- Centre of Excellence in Biological InteractionsUniversity of Jyväskylä Jyväskylä Finland
| | - Almut Kelber
- Lund Vision GroupDepartment of BiologyLund University Lund Sweden
| |
Collapse
|