1
|
Boardman L. Cross-talk between low temperature and other environmental factors. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101193. [PMID: 38490451 DOI: 10.1016/j.cois.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Low temperatures are rarely experienced in isolation. The impacts of low temperatures on insects can be exacerbated or alleviated by the addition of other environmental factors, including, for example, desiccation, hypoxia, or infection. One way in which environmental factors can interact is through cross-talk where different factors enact common signaling pathways. In this review, I highlight the breadth of abiotic and biotic factors that can interact with low-temperature tolerance in both natural and artificial environments; and discuss some of the candidate pathways that are possibly responsible for cross-talk between several factors. Specifically, I discuss three interesting candidates: the neurohormone octopamine, circadian clock gene vrille, and microbes. Finally, I discuss applications of cross-talk studies, and provide recommendations for researchers.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
2
|
Wang X, Liu L, Guo S, Liu B, Zhai Y, Yan S, Shen J, Ullah F, Li Z. Tweedle gene family of Drosophila suzukii (Matsumura) larva enhances the basal tolerance to cold and hypoxia. PEST MANAGEMENT SCIENCE 2023; 79:3012-3021. [PMID: 36966456 DOI: 10.1002/ps.7476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Drosophila suzukii (Matsumura) is considered a quarantine pest in the A2 list because it causes serious infection and huge economic losses. Cold and controlled atmosphere treatments have been used to control immature stage pests in fresh fruits. Herein, the basal tolerance response of D. suzukii egg, larva and pupa to cold and hypoxia stress were studied, and underlying transcriptome mechanisms in the larva were pinpointed. RESULTS The third instar was more tolerant than 12-h-old egg and 8-day-old pupa when treated at 3 °C + 1% O2 for 7 days, with 34.00% ± 5.22% larval survival. Hypoxia influenced the effect of cold treatment on D. suzukii. Larval survival decreased at 3 °C + 1% O2 , but increased at 0 °C + 1% O2 . Survival increased with temperature between 0 and 5 °C + 1% O2 , but decreased significantly at 25 °C + 1% O2 . RNA-sequencing results showed that the Tweedle (Twdl) family was upregulated and uniquely enriched in larvae treated at 3 °C + 1% O2 . In addition, RNA interference-mediated silencing of a key Twdl gene reduced the survival rate after cold and hypoxia treatment. CONCLUSION Hypoxia was able to influence the effect of cold treatment on the survival of D. suzukii positively or negatively. Structural constituents of the chitin-based cuticle, in particular Twdl genes, body morphogenesis, and ATP synthesis-coupled proton transport were involved in the tolerance to cold and hypoxia. In future, the Twdl gene could be used as a nanocarrier delivering RNA pesticides to control D. suzukii in the field and so prevent its worldwide spread. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Lijun Liu
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Shaokun Guo
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Bo Liu
- Institute of Equipment Technology, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
3
|
Su C, Ding C, Zhao Y, He B, Nie R, Hao J. Diapause-Linked Gene Expression Pattern and Related Candidate Duplicated Genes of the Mountain Butterfly Parnassius glacialis (Lepidoptera: Papilionidae) Revealed by Comprehensive Transcriptome Profiling. Int J Mol Sci 2023; 24:5577. [PMID: 36982649 PMCID: PMC10058462 DOI: 10.3390/ijms24065577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The mountain butterfly Parnassius glacialis is a representative species of the genus Parnassius, which probably originated in the high-altitude Qinhai-Tibet Plateau in the Miocene and later dispersed eastward into relatively low-altitude regions of central to eastern China. However, little is known about the molecular mechanisms underlying the long-term evolutionary adaptation to heterogeneous environmental conditions of this butterfly species. In this study, we obtained the high-throughput RNA-Seq data from twenty-four adult individuals in eight localities, covering nearly all known distributional areas in China, and firstly identified the diapause-linked gene expression pattern that is likely to correlate with local adaptation in adult P. glacialis populations. Secondly, we found a series of pathways responsible for hormone biosynthesis, energy metabolism and immune defense that also exhibited unique enrichment patterns in each group that are probably related to habitat-specific adaptability. Furthermore, we also identified a suite of duplicated genes (including two transposable elements) that are mostly co-expressed to promote the plastic responses to different environmental conditions. Together, these findings can help us to better understand this species' successful colonization to distinct geographic areas from the western to eastern areas of China, and also provide us with some insights into the evolution of diapause in mountain Parnassius butterfly species.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
4
|
Fitness Analysis and Transcriptome Profiling Following Repeated Mild Heat Stress of Varying Frequency in Drosophila melanogaster Females. BIOLOGY 2021; 10:biology10121323. [PMID: 34943239 PMCID: PMC8698867 DOI: 10.3390/biology10121323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary We studied the effect of mild heat stress (38 °C, 1 h) occurring once a day or once a week on D. melanogaster fertility, longevity, body composition metabolism and differential gene expression in fat body and adjacent tissues. Weekly stress in the first two weeks did not affect longevity but caused a decrease in fat content and an increase in the total level of fertility. Daily stress caused a significant longevity, fertility and fat content decrease, but an increase in carbohydrate levels compared with the control group. These data agree well with the results of transcriptome analysis, which demonstrated significant changes in expression levels of genes involved in proteolysis/digestion following daily stress. Heat shock protein 23 and stress-inducible humoral factor Turandot gene network are also involved. It is notable that daily and weekly heat stress resulted in different changes in metabolism, fitness and differential gene expression. Abstract Understanding how repeated stress affects metabolic and physiological functions in the long run is of crucial importance for evaluating anthropogenic pressure on the environment. We investigated fertility, longevity and metabolism in D. melanogaster females exposed to short-term heat stress (38 °C, 1 h) repeated daily or weekly. Daily stress was shown to cause a significant decrease in both fertility and longevity, as well as in body mass and triglyceride (fat) content, but a significant increase in trehalose and glucose content. Weekly stress did not affect longevity and carbohydrate metabolism but resulted in a significant decrease in body mass and fat content. Weekly stress did not affect the total level of fertility, despite sharp fertility drops on the exact days of stressing. However, stressing insects weekly, only in the first two weeks after eclosion, caused a significant increase in the total level of fertility. The analysis of differentially expressed genes in the fat bodies and adjacent tissues of researched groups with the use of RNA-Seq profiling revealed changes in signal pathways related to proteolysis/digestion, heat shock protein 23, and in the tightly linked stress-inducible humoral factor Turandot gene network.
Collapse
|
5
|
Javal M, Thomas S, Lehmann P, Barton MG, Conlong DE, Du Plessis A, Terblanche JS. The Effect of Oxygen Limitation on a Xylophagous Insect's Heat Tolerance Is Influenced by Life-Stage Through Variation in Aerobic Scope and Respiratory Anatomy. Front Physiol 2019; 10:1426. [PMID: 31824337 PMCID: PMC6879455 DOI: 10.3389/fphys.2019.01426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Temperature has a profound impact on insect fitness and performance via metabolic, enzymatic or chemical reaction rate effects. However, oxygen availability can interact with these thermal responses in complex and often poorly understood ways, especially in hypoxia-adapted species. Here we test the hypothesis that thermal limits are reduced under low oxygen availability - such as might happen when key life-stages reside within plants - but also extend this test to attempt to explain that the magnitude of the effect of hypoxia depends on variation in key respiration-related parameters such as aerobic scope and respiratory morphology. Using two life-stages of a xylophagous cerambycid beetle, Cacosceles (Zelogenes) newmannii we assessed oxygen-limitation effects on metabolic performance and thermal limits. We complement these physiological assessments with high-resolution 3D (micro-computed tomography scan) morphometry in both life-stages. Results showed that although larvae and adults have similar critical thermal maxima (CTmax) under normoxia, hypoxia reduces metabolic rate in adults to a greater extent than it does in larvae, thus reducing aerobic scope in the former far more markedly. In separate experiments, we also show that adults defend a tracheal oxygen (critical) setpoint more consistently than do larvae, indicated by switching between discontinuous gas exchange cycles (DGC) and continuous respiratory patterns under experimentally manipulated oxygen levels. These effects can be explained by the fact that the volume of respiratory anatomy is positively correlated with body mass in adults but is apparently size-invariant in larvae. Thus, the two life-stages of C. newmannii display key differences in respiratory structure and function that can explain the magnitude of the effect of hypoxia on upper thermal limits.
Collapse
Affiliation(s)
- Marion Javal
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Saskia Thomas
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Philipp Lehmann
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Madeleine G. Barton
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Desmond E. Conlong
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
- South African Sugarcane Research Institute, Mount Edgecombe, South Africa
| | - Anton Du Plessis
- CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa
- Physics Department, Stellenbosch University, Stellenbosch, South Africa
| | - John S. Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Eldon J, Bellinger MR, Price DK. Hawaiian picture-winged Drosophila exhibit adaptive population divergence along a narrow climatic gradient on Hawaii Island. Ecol Evol 2019; 9:2436-2448. [PMID: 30891191 PMCID: PMC6405895 DOI: 10.1002/ece3.4844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
Anthropogenic influences on global processes and climatic conditions are increasingly affecting ecosystems throughout the world.Hawaii Island's native ecosystems are well studied and local long-term climatic trends well documented, making these ecosystems ideal for evaluating how native taxa may respond to a warming environment.This study documents adaptive divergence of populations of a Hawaiian picture-winged Drosophila, D. sproati, that are separated by only 7 km and 365 m in elevation.Representative laboratory populations show divergent behavioral and physiological responses to an experimental low-intensity increase in ambient temperature during maturation. The significant interaction of source population by temperature treatment for behavioral and physiological measurements indicates differential adaptation to temperature for the two populations.Significant differences in gene expression among males were mostly explained by the source population, with eleven genes in males also showing a significant interaction of source population by temperature treatment.The combined behavior, physiology, and gene expression differences between populations illustrate the potential for local adaptation to occur over a fine spatial scale and exemplify nuanced response to climate change.
Collapse
Affiliation(s)
- Jon Eldon
- Tropical Conservation Biology and Environmental ScienceUniversity of HawaiiHiloHawaii
- Present address:
Indiana UniversityBloomingtonIndiana
| | | | - Donald K. Price
- Tropical Conservation Biology and Environmental ScienceUniversity of HawaiiHiloHawaii
- Present address:
University of Nevada – Las VegasLas VegasNevada
| |
Collapse
|
7
|
Rao Z, Cao L, Qiu X, Han R. Comparative transcriptome analysis reveals molecular strategies of ghost moth Thitarodes armoricanus in response to hypoxia and anoxia. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:23-34. [PMID: 30399366 DOI: 10.1016/j.jinsphys.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia or anoxia greatly impact the survival of many animal species. The ghost moth Thitarodes armoricanus is distributed in the Tibetan Plateau at an average elevation of approximate 4 km above sea level and has probably evolved a superior capacity to tolerate low oxygen levels. In this study, transcriptome analysis using high-throughput RNA-seq revealed common and different adaptation strategies of T. armoricanus in response to hypoxia (11% O2) or anoxia. T. armoricanus adopted three common strategies for adaptation to hypoxia or anoxia: Up-regulated signal transduction pathways essential for cellular survival, strengthened cell and organelle structure and activity, and activated immune system. Under hypoxia, T. armoricanus might develop a strategy to adapt to hypoxia by suppressing TCA, oxidative phosphorylation pathways, and hypoxanthine catabolism. T. armoricanus larvae kept active under hypoxia but became coma under anoxia, probably relating to up-regulated or suppressed dopamine synthesis pathway. Furthermore, the HIF system seemed not to be essential for regulating the hypoxic and anoxic responses of this insect in Tibetan Plateau. This study provides a global view of gene expression profiles and suggests common and different adaptation strategies of T. armoricanus under hypoxic and anoxic conditions. The results are helpful for understanding the mechanism responsible for the low oxygen level tolerance of this insect species.
Collapse
Affiliation(s)
- Zhongchen Rao
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Xuehong Qiu
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China.
| | - Richou Han
- Guangdong Key Laboratory of Animal Protection and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China.
| |
Collapse
|
8
|
Matthews PGD, Greenlee KJ, Verberk WCEP. The limits of respiratory function: External and internal constraints on insect gas exchange. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:153-154. [PMID: 29776581 DOI: 10.1016/j.jinsphys.2018.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Philip G D Matthews
- Department of Zoology, University of British Columbia, Vancouver, B.C., V6T 1Z4, Canada
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-6050
| | - Wilco C E P Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University, Nijmegen
| |
Collapse
|
9
|
Henry Y, Renault D, Colinet H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. ACTA ACUST UNITED AC 2018; 221:jeb.169342. [PMID: 29191860 DOI: 10.1242/jeb.169342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Crowding is a complex stress that can affect organisms' physiology, especially through decreased food quality and accessibility. Here, we evaluated the effect of larval density on several biological traits of Drosophila melanogaster An increasing gradient, from 1 to 1000 eggs per milliliter of food, was used to characterize life-history traits variations. Crowded conditions resulted in striking decreases of fresh mass (up to 6-fold) and viability, as well as delayed development. Next, we assessed heat and cold tolerance in L3 larvae reared at three selected larval densities: low (LD, 5 eggs ml-1), medium (MD, 60 eggs ml-1) and high (HD, 300 eggs ml-1). LT50 values of MD and, to a lesser extent, HD larvae were repeatedly higher than those from LD larvae, under both heat and cold stress. We investigated potential physiological correlates associated with this density-dependent thermotolerance shift. No marked pattern could be drawn from the expression of stress-related genes. However, a metabolomic analysis differentiated the metabotypes of the three density levels, with potential candidates associated with this clustering (e.g. glucose 6-phosphate, GABA, sugars and polyols). Under HD, signs of oxidative stress were noted but not confirmed at the transcriptional level. Finally, urea, a common metabolic waste, was found to accumulate substantially in food from MD and HD larvae. When supplemented in food, urea stimulated cold tolerance but reduced heat tolerance in LD larvae. This study highlights that larval crowding is an important environmental parameter that induces drastic consequences on flies' physiology and can affect thermotolerance in a density-specific way.
Collapse
Affiliation(s)
- Youn Henry
- UMR CNRS 6553 Ecobio, Université de Rennes 1, 263 Avenue du General Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - David Renault
- UMR CNRS 6553 Ecobio, Université de Rennes 1, 263 Avenue du General Leclerc, CS 74205, 35042 Rennes Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Hervé Colinet
- UMR CNRS 6553 Ecobio, Université de Rennes 1, 263 Avenue du General Leclerc, CS 74205, 35042 Rennes Cedex, France
| |
Collapse
|