1
|
Subramanyam S, Nemacheck JA, Suetsugu TE, Flynn RD, Faik A. Genetic and phenotypic responses of temperature-independent Hessian fly-resistant durum wheat to larval attack during heat stress. BMC PLANT BIOLOGY 2025; 25:210. [PMID: 39962422 PMCID: PMC11831824 DOI: 10.1186/s12870-025-06226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Wheat production is increasingly challenged by the devastating damage caused by insect pests. The advent of global warming is further exacerbating this threat. Hessian fly (Mayetiola destructor), a dipteran gall midge, is a destructive pest of host wheat (Triticum aestivum) having severe economic consequences. Planting wheat cultivars harboring resistance genes is the most effective and economical Hessian fly management strategy. However, heat stress poses a challenge to this strategy, as elevated temperature often breaks down Hessian fly resistance in wheat. Our prior study identified temperature-independent resistant T. turgidum (durum wheat) accessions that maintained resistance to Hessian fly when challenged with an increased temperature of 30 °C. In this study, we carried out follow-up characterization of these durum lines to highlight molecular components involved during Hessian fly resistance or susceptibility in wheat following heat stress. RESULTS Temperature-independent resistant durum lines were greater than 70% resistant to multiple Hessian fly biotypes at the elevated temperature of 30 °C. At the molecular level, these lines showed increased transcripts of Hfr-1, a gene encoding an antinutrient lectin, unlike the heat-triggered susceptible durum wheat. The Hessian fly susceptibility-associated biomarker genes were significantly upregulated in the durum wheat with heat-triggered susceptibility at 30 °C, resembling the gene expression profile observed in susceptible wheat. None of these susceptibility-associated genes were differentially expressed in the temperature-independent resistant wheat. Genes involved in oxidative stress and jasmonic acid pathways did not reveal any specific expression pattern attributed to either heat stress or larval feeding. Neutral red staining revealed limited cell wall permeability in the temperature-independent resistant wheat, unlike the heat-triggered susceptible durum plants that were highly permeable similar to a wheat line susceptible to Hessian fly at 20 °C. CONCLUSIONS Temperature-independent resistant durum wheat lines provided robust resistance to multiple Hessian fly biotypes at higher temperatures. These lines offer a valuable resource for wheat producers for providing resistance following heat stress.
Collapse
Affiliation(s)
- Subhashree Subramanyam
- Crop Production and Pest Control Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA.
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jill A Nemacheck
- Crop Production and Pest Control Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Taylor E Suetsugu
- College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Rachel D Flynn
- Crop Production and Pest Control Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
2
|
Yue WB, Zhou D, Li DY, Zhi JR, Fang XL, Qiu XY. Multigenerational variation in the nutrients and digestion of western flower thrips (Frankliniella occidentalis) depends on the nutritive quality of different foods. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:12. [PMID: 37052364 PMCID: PMC10099749 DOI: 10.1093/jisesa/iead020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Western flower thrips (WFTs), Frankliniella occidentalis (Thysanoptera, Thripidae), is one of the most serious pests that attack rose flowers. Little is known about the effect of different parts of the rose flower on nutritional contents and digestive enzyme activities in thrips. This study assessed variations in the nutritional contents and digestive enzyme activities in the second-instar larvae and adults WFTs fed on 3 food types (rose petals, rose flowers, and honey solution + kidney bean pods) for multiple generations. The highest contents of soluble sugar (in 10% honey solution + kidney bean pods), amino acid (in rose flowers), and protein (in rose flowers) were observed, respectively. Soluble sugar and protein contents in the second-instar larvae and adults fed on rose petals decreased in the F1 generation but increased in the F2 generation and remained at higher levels until the F7 generation. Feeding of thrips with 3 food types increased the lipid content in the F1 generation, which peaked in the F2 generation and remained high until the F7 generation. In most cases, α-amylase and trypsin activities significantly decreased in the F1 generation after feeding on rose petals and then prominently increased in the F2 generation. In contrast, chymotrypsin activity remarkably increased and peaked in the F1 generation after second-instar larvae thrips fed on rose petals. There were correlations among the contents of 3 nutrient related positively with the activities of α-amylase and trypsin in WFTs second-instar larvae and adults, respectively. Overall, variations in the nutrient properties of the 3 food types caused changes in nutrient contents and digestive enzyme activities in thrips.
Collapse
Affiliation(s)
- Wen Bo Yue
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Dan Zhou
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
- Qingzhen City Agricultural and Rural Bureau, Guiyang, Guizhou 551400, China
| | - Ding Yin Li
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | | | - Xin Lei Fang
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Xin Yue Qiu
- Institute of Entomology, Guizhou University, Guizhou Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| |
Collapse
|
3
|
Comparative Hessian Fly Larval Transcriptomics Provides Novel Insight into Host and Nonhost Resistance. Int J Mol Sci 2021; 22:ijms222111498. [PMID: 34768928 PMCID: PMC8583952 DOI: 10.3390/ijms222111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The Hessian fly is a destructive pest of wheat. Employing additional molecular strategies can complement wheat's native insect resistance. However, this requires functional characterization of Hessian-fly-responsive genes, which is challenging because of wheat genome complexity. The diploid Brachypodium distachyon (Bd) exhibits nonhost resistance to Hessian fly and displays phenotypic/molecular responses intermediate between resistant and susceptible host wheat, offering a surrogate genome for gene characterization. Here, we compared the transcriptomes of Biotype L larvae residing on resistant/susceptible wheat, and nonhost Bd plants. Larvae from susceptible wheat and nonhost Bd plants revealed similar molecular responses that were distinct from avirulent larval responses on resistant wheat. Secreted salivary gland proteins were strongly up-regulated in all larvae. Genes from various biological pathways and molecular processes were up-regulated in larvae from both susceptible wheat and nonhost Bd plants. However, Bd larval expression levels were intermediate between larvae from susceptible and resistant wheat. Most genes were down-regulated or unchanged in avirulent larvae, correlating with their inability to establish feeding sites and dying within 4-5 days after egg-hatch. Decreased gene expression in Bd larvae, compared to ones on susceptible wheat, potentially led to developmentally delayed 2nd-instars, followed by eventually succumbing to nonhost resistance defense mechanisms.
Collapse
|
4
|
Insect derived extra oral GH32 plays a role in susceptibility of wheat to Hessian fly. Sci Rep 2021; 11:2081. [PMID: 33483565 PMCID: PMC7822839 DOI: 10.1038/s41598-021-81481-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
The Hessian fly is an obligate parasite of wheat causing significant economic damage, and triggers either a resistant or susceptible reaction. However, the molecular mechanisms of susceptibility leading to the establishment of the larvae are unknown. Larval survival on the plant requires the establishment of a steady source of readily available nutrition. Unlike other insect pests, the Hessian fly larvae have minute mandibles and cannot derive their nutrition by chewing tissue or sucking phloem sap. Here, we show that the virulent larvae produce the glycoside hydrolase MdesGH32 extra-orally, that localizes within the leaf tissue being fed upon. MdesGH32 has strong inulinase and invertase activity aiding in the breakdown of the plant cell wall inulin polymer into monomers and converting sucrose, the primary transport sugar in plants, to glucose and fructose, resulting in the formation of a nutrient-rich tissue. Our finding elucidates the molecular mechanism of nutrient sink formation and establishment of susceptibility.
Collapse
|
5
|
Navarro-Escalante L, Zhao C, Shukle R, Stuart J. BSA-Seq Discovery and Functional Analysis of Candidate Hessian Fly ( Mayetiola destructor) Avirulence Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:956. [PMID: 32670342 PMCID: PMC7330099 DOI: 10.3389/fpls.2020.00956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/10/2020] [Indexed: 05/17/2023]
Abstract
The Hessian fly (HF, Mayetiola destructor) is a plant-galling parasite of wheat (Triticum spp.). Seven percent of its genome is composed of highly diversified signal-peptide-encoding genes that are transcribed in HF larval salivary glands. These observations suggest that they encode effector proteins that are injected into wheat cells to suppress basal wheat immunity and redirect wheat development towards gall formation. Genetic mapping has determined that mutations in four of these genes are associated with HF larval survival (virulence) on plants carrying four different resistance (R) genes. Here, this line of investigation was pursued further using bulked-segregant analysis combined with whole genome resequencing (BSA-seq). Virulence to wheat R genes H6, Hdic, and H5 was examined. Mutations associated with H6 virulence had been mapped previously. Therefore, we used H6 to test the capacity of BSA-seq to map virulence using a field-derived HF population. This was the first time a non-structured HF population had been used to map HF virulence. Hdic virulence had not been mapped previously. Using a structured laboratory population, BSA-seq associated Hdic virulence with mutations in two candidate effector-encoding genes. Using a laboratory population, H5 virulence was previously positioned in a region spanning the centromere of HF autosome 2. BSA-seq resolved H5 virulence to a 1.3 Mb fragment on the same chromosome but failed to identify candidate mutations. Map-based candidate effectors were then delivered to Nicotiana plant cells via the type III secretion system of Burkholderia glumae bacteria. These experiments demonstrated that the genes associated with virulence to wheat R genes H6 and H13 are capable of suppressing plant immunity. Results are consistent with the hypothesis that effector proteins underlie the ability of HFs to survive on wheat.
Collapse
Affiliation(s)
| | - Chaoyang Zhao
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Richard Shukle
- USDA-ARS and Department of Entomology, Purdue University, West Lafayette, IN, United States
| | - Jeffrey Stuart
- Department of Entomology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Nemacheck JA, Schemerhorn BJ, Scofield SR, Subramanyam S. Phenotypic and molecular characterization of Hessian fly resistance in diploid wheat, Aegilops tauschii. BMC PLANT BIOLOGY 2019; 19:439. [PMID: 31640550 PMCID: PMC6805508 DOI: 10.1186/s12870-019-2058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The Hessian fly (Mayetiola destructor), belonging to the gall midge family (Cecidomyiidae), is a devastating pest of wheat (Triticum aestivum) causing significant yield losses. Despite identification and characterization of numerous Hessian fly-responsive genes and associated biological pathways involved in wheat defense against this dipteran pest, their functional validation has been challenging. This is largely attributed to the large genome, polyploidy, repetitive DNA, and limited genetic resources in hexaploid wheat. The diploid progenitor Aegilops tauschii, D-genome donor of modern-day hexaploid wheat, offers an ideal surrogate eliminating the need to target all three homeologous chromosomes (A, B and D) individually, and thereby making the functional validation of candidate Hessian fly-responsive genes plausible. Furthermore, the well-annotated sequence of Ae. tauschii genome and availability of genetic resources amenable to manipulations makes the functional assays less tedious and time-consuming. However, prior to utilization of this diploid genome for downstream studies, it is imperative to characterize its physical and molecular responses to Hessian fly. RESULTS In this study we screened five Ae. tauschii accessions for their response to the Hessian fly biotypes L and vH13. Two lines were identified that exhibited a homozygous resistance response to feeding by both Hessian fly biotypes. Studies using physical measurements and neutral red staining showed that the resistant Ae. tauschii accessions resembled hexaploid wheat in their phenotypic responses to Hessian fly, that included similarities in larval developmental stages, leaf and plant growth, and cell wall permeability. Furthermore, molecular responses, characterized by gene expression profiling using quantitative real-time PCR, in select resistant Ae. tauschii lines also revealed similarities with resistant hexaploid wheat. CONCLUSIONS Phenotypic and molecular characterization of Ae. tauschii to Hessian fly infestation revealed resistant accessions that shared similarities to hexaploid wheat. Resembling the resistant hexaploid wheat, the Ae. tauschii accessions mount an early defense strategy involving defense proteins including lectins, secondary metabolites and reactive oxygen species (ROS) radicals. Our results reveal the suitability of the diploid progenitor for use as an ideal tool for functional genomics research in deciphering the wheat-Hessian fly molecular interactions.
Collapse
Affiliation(s)
- Jill A Nemacheck
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Brandon J Schemerhorn
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Steven R Scofield
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Subhashree Subramanyam
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Subramanyam S, Nemacheck JA, Hargarten AM, Sardesai N, Schemerhorn BJ, Williams CE. Multiple molecular defense strategies in Brachypodium distachyon surmount Hessian fly (Mayetiola destructor) larvae-induced susceptibility for plant survival. Sci Rep 2019; 9:2596. [PMID: 30796321 PMCID: PMC6385206 DOI: 10.1038/s41598-019-39615-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 11/24/2022] Open
Abstract
The Hessian fly is a destructive pest of wheat causing severe economic damage. Numerous genes and associated biological pathways have been implicated in defense against Hessian fly. However, due to limited genetic resources, compounded with genome complexity, functional analysis of the candidate genes are challenging in wheat. Physically, Brachypodium distachyon (Bd) exhibits nonhost resistance to Hessian fly, and with a small genome size, short life cycle, vast genetic resources and amenability to transformation, it offers an alternate functional genomic model for deciphering plant-Hessian fly interactions. RNA-sequencing was used to reveal thousands of Hessian fly-responsive genes in Bd one, three, and five days after egg hatch. Genes encoding defense proteins, stress-regulating transcription factors, signaling kinases, and secondary metabolites were strongly up-regulated within the first 24 hours of larval feeding indicating an early defense, similar to resistant wheat. Defense was mediated by a hypersensitive response that included necrotic lesions, up-regulated ROS-generating and -scavenging enzymes, and H2O2 production. Suppression of cell wall-associated proteins and increased cell permeability in Bd resembled susceptible wheat. Thus, Bd molecular responses shared similarities to both resistant and susceptible wheat, validating its suitability as a model genome for undertaking functional studies of candidate Hessian fly-responsive genes.
Collapse
Affiliation(s)
- Subhashree Subramanyam
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. .,USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.
| | - Jill A Nemacheck
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
| | - Andrea M Hargarten
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
| | - Nagesh Sardesai
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, 50131, USA
| | - Brandon J Schemerhorn
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.,Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christie E Williams
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.,USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
| |
Collapse
|