1
|
Gerber R, Piscart C, Roussel JM, Bergerot B. Morphology-based classification of the flying capacities of aquatic insects: A first attempt. Curr Zool 2024; 70:607-617. [PMID: 39463693 PMCID: PMC11502146 DOI: 10.1093/cz/zoad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2024] Open
Abstract
Flight is a key feature of the reproduction and dispersal of emerging aquatic insects. However, morphological measurements of insect flight are mostly available for terrestrial taxa and dragonflies, while aquatic insects have been poorly investigated. We analyzed 7 flight-related morphological parameters of 32 taxa belonging to 5 orders of emerging aquatic insects (Ephemeroptera, Trichoptera, Plecoptera, Diptera, and Megaloptera) with different life history traits related to flight (dispersal strategy, voltinism, adult lifespan, and swarming behavior). After correcting for allometry, we used an a priori-free approach to cluster the individuals according to their flight-related morphology. Then, we explored the levels of agreement between these clusters, taxonomy, and several life history traits of the taxa. All orders were scattered among several clusters, suggesting a large range of flight capacities, particularly for Diptera. We found swarming taxa in each cluster, showing that morphological adaptations to swarming are not identical in all aquatic insects. The clusters did not match the expected dispersal capacity of the taxa as derived from the literature or databases. Heavy wide-winged insects notably gathered taxa traditionally described as good or weak dispersers. Flight capacities based on morphology partly matched with the taxonomy and life-history traits of aquatic insect imagoes. Other parameters such as flight propensity, energy stores, and wing kinematics should help refine their flying and dispersal capacity.
Collapse
Affiliation(s)
- Rémi Gerber
- University of Rennes, CNRS, ECOBIO UMR 6553, F-35042 Rennes, France
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | | | - Jean-Marc Roussel
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | | |
Collapse
|
2
|
Song F, Yan Y, Sun J. Energy consumption during insect flight and bioinspiration for MAV design: A review. Comput Biol Med 2024; 170:108092. [PMID: 38325218 DOI: 10.1016/j.compbiomed.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The excellent biological characteristics of insects provide an important source of inspiration for designing micro air vehicles (MAVs). Insect flight is an incredibly complex and energy-intensive process. Unique insect flight muscles and contraction mechanisms enable flapping at high frequencies. Moreover, the metabolic rate during flight can reach hundreds of times the resting state. Understanding energy consumption during flight is crucial for designing efficient biomimetic aircraft. This paper summarizes the structures and contraction mechanisms of insect flight muscles, explores the underlying metabolic processes, and identifies methods for energy substrate identification and detection, and discusses inspiration for biomimetic MAV design. This paper reviews energy consumption during insect flight, promotes the understanding of insect bioenergetics, and applies this information to the design of MAVs.
Collapse
Affiliation(s)
- Fa Song
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, PR China
| | - Yongwei Yan
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, PR China
| | - Jiyu Sun
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, PR China.
| |
Collapse
|
3
|
Tahmasian S, Kotulak-Smith BC. The effects of wing inertial forces and mean stroke angle on the pitch dynamics of hovering insects. Sci Rep 2024; 14:2814. [PMID: 38307914 PMCID: PMC10837190 DOI: 10.1038/s41598-024-53139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
This paper discusses the wing inertial effects and the important role of the mean stroke angle on the pitch dynamics of hovering insects. The paper also presents a dynamic model appropriate for averaging and discusses the pitch stability results derived from the model. The model is used to predict the body angle of five insect species during hover, which are in good agreement with the available experimental results from different literature. The results suggest that the wing inertial forces have a considerable effect on pitch dynamics of insect flight and should not be ignored in dynamic analysis of hovering insects. The results also suggest that the body of hovering insects can not be vibrationally stabilized in a non-vertical orientation. Instead, the pitch angle of a hovering insect's body is mainly due to a balance of the moment of the insect's weight and the aerodynamic moment due to flapping kinematics with a nonzero mean stroke angle. Experiments with a flapping wing device confirm this results. To clearly explain the used model and clarify the difference between vibrational and non-vibrational stabilization, first this paper discusses the vibrational control of a three-degree-of-freedom force-input pendulum with its pivot moving in a vertical plane.
Collapse
Affiliation(s)
- Sevak Tahmasian
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
| | - Braeden C Kotulak-Smith
- Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
4
|
Meng X, Liu X, Chen Z, Wu J, Chen G. Wing kinematics measurement and aerodynamics of hovering droneflies with wing damage. BIOINSPIRATION & BIOMIMETICS 2023; 18:026013. [PMID: 36745924 DOI: 10.1088/1748-3190/acb97c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
In this study, we performed successive unilateral and bilateral wing shearing to simulate wing damage in droneflies (Eristalis tenax) and measured the wing kinematics using high-speed photography technology. Two different shearing types were considered in the artificial wing damage. The aerodynamic force and power consumption were obtained by numerical method. Our major findings are the following. Different shearing methods have little influence on the kinematics, forces and energy consumption of insects. Following wing damage, among the potential strategies to adjust the three Euler angles of the wing, adjusting stroke angle (φ) in isolation, or combing the adjustment of stroke angle (φ) with pitch angle (ψ), contributed most to the change in vertical force. The balance of horizontal thrust can be restored by the adjustment of deviation angle (θ) under the condition of unilateral wing damage. Considering zero elastic energy storage, the mass-specific power (P1) increases significantly following wing damage. However, the increase in mass-specific power with 100% elastic energy storage (P2) is very small. The extra cost of the unilateral wing damage is that the energy consumption of the damaged wing and intact wing is highly asymmetrical when zero elastic energy storage is considered. The insects may alleviate the problems of increasing power consumption and asymmetric power distribution by storage and reuse of the negative inertial work of the wing.
Collapse
Affiliation(s)
- Xueguang Meng
- Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, State key laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xinyu Liu
- Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, State key laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zengshuang Chen
- Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, State key laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jianghao Wu
- School of Transportation Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Gang Chen
- Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, State key laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
5
|
Sun J, Li P, Yan Y, Song F, Xu N, Zhang Z. Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratios. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:845-856. [PMID: 36105689 PMCID: PMC9443306 DOI: 10.3762/bjnano.13.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
When beetles are not in flight, their hind wings are folded and hidden under the elytra to reduce their size. This provided inspiration for the design of flapping-wing micro aerial vehicles (FWMAVs). In this paper, microstructures and nanomechanical properties of three beetle species with different wing folding ratios living in different environments were investigated. Factors affecting their flight performance, that is, wind speed, folding ratio, aspect ratio, and flapping frequency, were examined using a wind tunnel. It was found that the wing folding ratio correlated with the lift force of the beetles. Wind speed, folding ratio, aspect ratio, and flapping frequency had a combined effect on the flight performance of the beetles. The results will be helpful to design new deployable FWMAVs.
Collapse
Affiliation(s)
- Jiyu Sun
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, P.R. China
| | - Pengpeng Li
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, P.R. China
| | - Yongwei Yan
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, P.R. China
| | - Fa Song
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, P.R. China
| | - Nuo Xu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, P.R. China
| | - Zhijun Zhang
- Key Laboratory of CNC Equipment Reliability (Ministry of Education) and School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, P.R. China
| |
Collapse
|