1
|
Chakraborty A, Sgrò CM, Mirth CK. Untangling plastic responses to combined thermal and dietary stress in insects. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101328. [PMID: 39743206 DOI: 10.1016/j.cois.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Animals are exposed to changes in their environmental conditions daily. Such changes will become increasingly more erratic and unpredictable with ongoing climate change. Responses to changing environments are influenced by the genetic architecture of the traits under selection and modified by a range of physiological, developmental, and behavioural changes resulting from phenotypic plasticity. Furthermore, the interactions between multiple environmental stressors to which organisms are exposed can generate unexpected phenotypic responses. Understanding how genetic and plastic variation contributes to the response to combined environmental stress will be key to predicting how animals will cope with climate change and ultimately will define their ability to persist. Here, we review the approaches used to explore how animals respond to combined stressors, specifically nutrition and temperature, the physiological mechanisms that underlie such plastic responses, and how genetic variation alters this plasticity.
Collapse
Affiliation(s)
- Avishikta Chakraborty
- University College London, London, United Kingdom; Monash University, Clayton, Melbourne, Australia
| | - Carla M Sgrò
- Monash University, Clayton, Melbourne, Australia
| | | |
Collapse
|
2
|
Papadopoulos AG, Koskinioti P, Zarpas KD, Prekas P, Terblanche JS, Hahn DA, Papadopoulos NT. Age and mating status have complex but modest effects on the critical thermal limits of adult Mediterranean fruit flies from geographically divergent populations. J Therm Biol 2024; 126:104013. [PMID: 39586117 DOI: 10.1016/j.jtherbio.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
The highly invasive Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is currently expanding its geographic distribution into cooler temperate areas of the Northern Hemisphere. In marginal conditions, the invasion potential of medfly depends in part on innate tolerance to the novel environmental conditions. Physiological tolerances are potentially influenced by interactions among multiple factors, such as organism age or reproductive maturity, sex, and mating status. Furthermore, the relationships between the above factors and tolerances may differ among geographically distinct populations. Here, the effects of age and mating status on thermal tolerance of three geographically distinct medfly populations along a latitudinal gradient ranging from Greece (Crete & Volos) to Croatia (Dubrovnik) were examined. The upper and lower critical thermal limits (scored as loss of neuromuscular function during controlled cooling or heating) of adult males and females (a) at 1-, 6-, 15-, and 35 days old and of (b) both mated and virgin flies were assessed. Results showed that estimates of lower and upper thermal limits (CTmin and CTmax) were both population- and age-dependent. In most age classes tested, CTmin values were lower for the adults obtained from Crete and higher for those from Dubrovnik. CTmax values were lower for the females from Dubrovnik compared to the females from any other population on day one after emergence but not on days 6, 15 and 35. Differences among populations were observed across different age classes both for cold and heat tolerance but mostly in CTmin estimates. Mating status had a little effect on cold and heat tolerance. Complex patterns of thermal limit variation within and among populations suggest a suite of factors determine population-level mortality from thermal extremes under field conditions in medfly. These results contribute towards understanding the invasion dynamics of medfly and its range expansion to northern, more temperate regions of Europe.
Collapse
Affiliation(s)
- Antonis G Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Panagiota Koskinioti
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Kostas D Zarpas
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - Paraschos Prekas
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa.
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Nikos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| |
Collapse
|
3
|
Wernicke M, Egartner A, Blümel S, Moraiti CA, Papadopoulos NT. Overwintering potential of the Mediterranean fruit fly (Diptera: Tephritidae) in Austria. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1983-1994. [PMID: 39121382 PMCID: PMC11473042 DOI: 10.1093/jee/toae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024]
Abstract
The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), one of the most important invasive pests of fresh fruits and vegetables from the coastal Mediterranean habitats, is expanding its current geographic distribution to cooler more temperate areas of Europe. Every year since 2010 the fly is detected in the area of Vienna, Austria. However, whether it can establish permanent populations is not known. In this current paper, the capacity of C. capitata to overwinter in Vienna, Austria (48.1° northern latitude) was studied over 2 consecutive winter seasons (2020-2022). Overwintering trials with different life stages (larva, pupa, and adult) of C. capitata were performed in the open field and in the protected environment of a basement without a heating system. Control flies were kept under constant conditions in a climate chamber (25 °C, 60% RH, 14:10 L:D). Our data showed that no life stage of the Mediterranean fruit fly was able to survive the Austrian winter in the open field. However, in the protected environment C. capitata outlived the winter months in all studied life stages at least in small numbers and several surviving females were able to lay eggs at the time of the following fruiting season. Implications of these findings for the ongoing geographic range expansion of the pest in temperate European countries are discussed.
Collapse
Affiliation(s)
- Matthias Wernicke
- Austrian Agency for Health and Food Safety (AGES), Institute for Sustainable Plant Production (NPP), Vienna, Austria
| | - Alois Egartner
- Austrian Agency for Health and Food Safety (AGES), Institute for Sustainable Plant Production (NPP), Vienna, Austria
| | - Sylvia Blümel
- Austrian Agency for Health and Food Safety (AGES), Institute for Sustainable Plant Production (NPP), Vienna, Austria
| | - Cleopatra A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, Laboratory of Entomology and Agricultural Zoology, University of Thessaly, Volos, Greece
| | - Nikos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, Laboratory of Entomology and Agricultural Zoology, University of Thessaly, Volos, Greece
| |
Collapse
|
4
|
Szyniszewska AM, Bieszczak H, Kozyra K, Papadopoulos NT, De Meyer M, Nowosad J, Ota N, Kriticos DJ. Evidence that recent climatic changes have expanded the potential geographical range of the Mediterranean fruit fly. Sci Rep 2024; 14:2515. [PMID: 38291088 PMCID: PMC10828498 DOI: 10.1038/s41598-024-52861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
The species distributions migration poleward and into higher altitudes in a warming climate is especially concerning for economically important insect pest species, as their introduction can potentially occur in places previously considered unsuitable for year-round survival. We explore the expansion of the climatically suitable areas for a horticultural pest, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera, Tephritidae), with an emphasis on Europe and California. We reviewed and refined a published CLIMEX model for C. capitata, taking into consideration new records in marginal locations, with a particular focus on Europe. To assess the model fit and to aid in interpreting the meaning of the new European distribution records, we used a time series climate dataset to explore the temporal patterns of climate suitability for C. capitata from 1970 to 2019. At selected bellwether sites in Europe, we found statistically significant trends in increasing climate suitability, as well as a substantial northward expansion in the modelled potential range. In California, we also found a significant trend of northward and altitudinal expansion of areas suitable for C. capitata establishment. These results provide further evidence of climate change impacts on species distributions and the need for innovative responses to increased invasion threats.
Collapse
Affiliation(s)
| | | | | | - Nikos T Papadopoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | | | - Jakub Nowosad
- Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Poznań, Poland
| | | | - Darren J Kriticos
- Cervantes Agritech Pty Limited, Canberra, Australia.
- Macquarie University, Sydney, Australia.
| |
Collapse
|
5
|
Papadopoulos AG, Koskinioti P, Zarpas KD, Papadopoulos NT. Differential Cold Tolerance on Immature Stages of Geographically Divergent Ceratitis capitata Populations. BIOLOGY 2023; 12:1379. [PMID: 37997978 PMCID: PMC10668952 DOI: 10.3390/biology12111379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Cold tolerance of adult medflies has been extensively studied but the effect of subfreezing temperatures on the immature stages remains poorly investigated, especially as far as different populations are regarded. In this study, we estimated the acute cold stress response of three geographically divergent Mediterranean fruit fly populations originating from Greece (Crete, Volos) and Croatia (Dubrovnik) by exposing immature stages (eggs, larvae, pupae) to subfreezing temperatures. We first determined the LT50 for each immature stage following one hour of exposure to different temperatures. Then eggs, larvae and pupae of the different populations were exposed to their respective LT50 for one hour (LT50 = -11 °C, LT50 = -4.4 °C, LT50 = -5 °C for eggs, larvae and pupae, respectively). Our results demonstrate that populations responded differently depending on their developmental stage. The population of Dubrovnik was the most cold-susceptible at the egg stage, whereas in that of Crete it was at the larval and pupal stage. The population of Volos was the most cold-tolerant at all developmental stages. The egg stage was the most cold-tolerant, followed by pupae and finally the 3rd instar wandering larvae. This study contributes towards understanding the cold stress response of this serious pest and provides data for important parameters that determine its successful establishment to unfavorable environments with an emphasis on range expansion to the northern, more temperate regions of Europe.
Collapse
Affiliation(s)
| | | | | | - Nikos T. Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (A.G.P.); (P.K.); (K.D.Z.)
| |
Collapse
|