1
|
Inwood SN, Skelly J, Guhlin JG, Harrop TWR, Goldson SL, Dearden PK. Chromosome-level genome assemblies of two parasitoid biocontrol wasps reveal the parthenogenesis mechanism and an associated novel virus. BMC Genomics 2023; 24:440. [PMID: 37543591 PMCID: PMC10403939 DOI: 10.1186/s12864-023-09538-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Biocontrol is a key technology for the control of pest species. Microctonus parasitoid wasps (Hymenoptera: Braconidae) have been released in Aotearoa New Zealand as biocontrol agents, targeting three different pest weevil species. Despite their value as biocontrol agents, no genome assemblies are currently available for these Microctonus wasps, limiting investigations into key biological differences between the different species and strains. METHODS AND FINDINGS Here we present high-quality genomes for Microctonus hyperodae and Microctonus aethiopoides, assembled with short read sequencing and Hi-C scaffolding. These assemblies have total lengths of 106.7 Mb for M. hyperodae and 129.2 Mb for M. aethiopoides, with scaffold N50 values of 9 Mb and 23 Mb respectively. With these assemblies we investigated differences in reproductive mechanisms, and association with viruses between Microctonus wasps. Meiosis-specific genes are conserved in asexual Microctonus, with in-situ hybridisation validating expression of one of these genes in the ovaries of asexual Microctonus aethiopoides. This implies asexual reproduction in these Microctonus wasps involves meiosis, with the potential for sexual reproduction maintained. Investigation of viral gene content revealed candidate genes that may be involved in virus-like particle production in M. aethiopoides, as well as a novel virus infecting M. hyperodae, for which a complete genome was assembled. CONCLUSION AND SIGNIFICANCE These are the first published genomes for Microctonus wasps which have been deployed as biocontrol agents, in Aotearoa New Zealand. These assemblies will be valuable resources for continued investigation and monitoring of these biocontrol systems. Understanding the biology underpinning Microctonus biocontrol is crucial if we are to maintain its efficacy, or in the case of M. hyperodae to understand what may have influenced the significant decline of biocontrol efficacy. The potential for sexual reproduction in asexual Microctonus is significant given that empirical modelling suggests this asexual reproduction is likely to have contributed to biocontrol decline. Furthermore the identification of a novel virus in M. hyperodae highlights a previously unknown aspect of this biocontrol system, which may contribute to premature mortality of the host pest. These findings have potential to be exploited in future in attempt to increase the effectiveness of M. hyperodae biocontrol.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand
| | - John Skelly
- Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand
- Humble Bee Bio, Wellington, Aotearoa, New Zealand
| | - Joseph G Guhlin
- Genomics Aotearoa, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Thomas W R Harrop
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephen L Goldson
- Biocontrol and Biosecurity Group, AgResearch Limited, Lincoln, Aotearoa, New Zealand
| | - Peter K Dearden
- Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand.
- Genomics Aotearoa, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
2
|
Chen Y, Wang P, Shu X, Wang Z, Chen X. Morphology and Ultrastructure of the Female Reproductive Apparatus of an Asexual Strain of the Endoparasitoid Meteorus pulchricornis (Wesmael) (Hymenoptera, Braconidae). BIOLOGY 2023; 12:biology12050713. [PMID: 37237527 DOI: 10.3390/biology12050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Meteorus pulchricornis (Wesmael) is a solitary endoparasitoid of lepidopteran pests and a good candidate for the control of Spodoptera frugiperda. To elucidate the structure of the female reproductive apparatus, which may play a role in facilitating successful parasitism, we presented the description of the morphology and ultrastructure of the whole female reproductive system in a thelytokous strain of M. pulchricornis. Its reproductive system includes a pair of ovaries without specialized ovarian tissues, a branched venom gland, a venom reservoir, and a single Dufour gland. Each ovariole contains follicles and oocytes at different stages of maturation. A fibrous layer, possibly an egg surface protector, coats the surface of mature eggs. The venom gland consists of secretory units (including secretory cells and ducts) with abundant mitochondria, vesicles and end apparatuses in the cytoplasm, and a lumen. The venom reservoir is comprised of a muscular sheath, epidermal cells with few end apparatuses and mitochondria, and a large lumen. Furthermore, venosomes are produced by secretory cells and delivered into the lumen via the ducts. As a result, myriad venosomes are observed in the venom gland filaments and the venom reservoir, suggesting that they may function as a parasitic factor and have important roles in effective parasitism.
Collapse
Affiliation(s)
- Yusi Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Pengzhan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Shu
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhizhi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Lab of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Quicke DLJ, Butcher BA. Review of Venoms of Non-Polydnavirus Carrying Ichneumonoid Wasps. BIOLOGY 2021; 10:50. [PMID: 33445639 PMCID: PMC7828074 DOI: 10.3390/biology10010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022]
Abstract
Parasitoids are predominantly insects that develop as larvae on or inside their host, also usually another insect, ultimately killing it after various periods of parasitism when both parasitoid larva and host are alive. The very large wasp superfamily Ichneumonoidea is composed of parasitoids of other insects and comprises a minimum of 100,000 species. The superfamily is dominated by two similarly sized families, Braconidae and Ichneumonidae, which are collectively divided into approximately 80 subfamilies. Of these, six have been shown to release DNA-containing virus-like particles, encoded within the wasp genome, classified in the virus family Polydnaviridae. Polydnaviruses infect and have profound effects on host physiology in conjunction with various venom and ovarial secretions, and have attracted an immense amount of research interest. Physiological interactions between the remaining ichneumonoids and their hosts result from adult venom gland secretions and in some cases, ovarian or larval secretions. Here we review the literature on the relatively few studies on the effects and chemistry of these ichneumonoid venoms and make suggestions for interesting future research areas. In particular, we highlight relatively or potentially easily culturable systems with features largely lacking in currently studied systems and whose study may lead to new insights into the roles of venom chemistry in host-parasitoid relationships as well as their evolution.
Collapse
Affiliation(s)
- Donald L. J. Quicke
- Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand;
- Center of Excellence in Entomology, Bee Biology, Diversity of Insects and Mites, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand
| | - Buntika A. Butcher
- Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand;
- Center of Excellence in Entomology, Bee Biology, Diversity of Insects and Mites, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand
| |
Collapse
|
4
|
The First Complete Genome Sequence of a Novel Tetrastichus brontispae RNA Virus-1 (TbRV-1). Viruses 2019; 11:v11030257. [PMID: 30871248 PMCID: PMC6466307 DOI: 10.3390/v11030257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 11/17/2022] Open
Abstract
The complete sequence of a novel RNA virus isolated from Tetrastichus brontispae (TbRV-1) was determined to be 12,239 nucleotides in length with five non-overlapping, linearly arranged coding sequences (CDS), potentially encoding nucleoproteins, hypothetical proteins, matrix proteins, glycoproteins, and RNA-dependent RNA polymerases. Sequence analysis indicated that the RNA-dependent RNA polymerase of TbRV-1 shares a 65% nucleotide and 67% amino acid sequence identity with Hubei dimarhabdovirus 2, suggesting that TbRV-1 is a member of the dimarhabdovirus supergroup. This corresponded to the result of the phylogenetic analysis. The affiliation of TbRV-1 with members of the family Rhabdoviridae was further validated by similar transcription termination motifs (GGAACUUUUUUU) to the Drosophila sigmavirus. The prevalence of TbRV-1 in all tissues suggested that the virus was constitutive of, and not specific to, any wasp tissue. To our knowledge, this is the first report on the complete genome sequence of a dimarhabdovirus in parasitoids.
Collapse
|
5
|
Ultrastructure of the female reproductive apparatus of the egg parasitoid Gryon pennsylvanicum (Ashmead) (Hymenoptera, Platygastridae). Micron 2014; 61:28-39. [PMID: 24792444 DOI: 10.1016/j.micron.2014.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/27/2014] [Accepted: 02/07/2014] [Indexed: 11/22/2022]
Abstract
The growing interest in Leptoglossus occidentalis, the conifer seed bug pest accidentally introduced into Europe in the 1990s, led us to investigate the female reproductive structures of the hymenopteran platygastrid Gryon pennsylvanicum, which is its candidate antagonist for biological control programmes. Our study revealed a genital apparatus with some characteristic features, such as an unusual length of the oviduct (divided into a long proximal and a short distal tract), the absence of accessory glands and the presence of a spermatheca provided with a small spermathecal gland. The ultrastructural investigation revealed that the shorter part of the common oviduct is involved in ion uptake whereas the longer part has two cell types with secretory function: the former with dense bodies and the latter with granular particles. The secretory contents of both are released into the oviduct lumen. The granular particles are formed in a complex of modified endoplasmic reticulum and appear as virus-like particles.
Collapse
|
6
|
Luo L, Zeng L. A new rod-shaped virus from parasitic wasp Diachasmimorpha longicaudata (Hymenoptera: Braconidae). J Invertebr Pathol 2009; 103:165-9. [PMID: 19682456 DOI: 10.1016/j.jip.2009.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 07/28/2009] [Accepted: 08/07/2009] [Indexed: 11/27/2022]
Abstract
A new rod-shaped nucleocapsids (NCs) was found inadvertently in Diachasmimorpha longicaudata accessory gland filaments (AGFs). The NCs were 30 nm in diameter and nearly 900 nm in length. They replicated in a small cell type of the AGFs in D. longicaudata, and following oviposition, invaded and proliferated in the hemocytes of a parasitized host Bactrocera dorsalis Hendel. This finding of a completely new virus in the AGF indicate that different geographical populations (subspecies) of D. longicaudata may carry different sybionts. This is the first report showing that the same wasp species, but from a different geographical populations, can carry an entirely different virus.
Collapse
Affiliation(s)
- Li Luo
- Laboratory of Insect Ecology, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, China
| | | |
Collapse
|