1
|
Graves LP, Aksular M, Alakeely RA, Ruiz Buck D, Chambers AC, Murguia-Meca F, Plata-Muñoz JJ, Hughes S, Johnson PRV, Possee RD, King LA. Improved Baculovirus Vectors for Transduction and Gene Expression in Human Pancreatic Islet Cells. Viruses 2018; 10:E574. [PMID: 30347797 PMCID: PMC6213606 DOI: 10.3390/v10100574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Pancreatic islet transplantation is a promising treatment for type 1 diabetes mellitus offering improved glycaemic control by restoring insulin production. Improved human pancreatic islet isolation has led to higher islet transplantation success. However, as many as 50% of islets are lost after transplantation due to immune responses and cellular injury, gene therapy presents a novel strategy to protect pancreatic islets for improved survival post-transplantation. To date, most of the vectors used in clinical trials and gene therapy studies have been derived from mammalian viruses such as adeno-associated or retrovirus. However, baculovirus BacMam vectors provide an attractive and safe alternative. Here, a novel BacMam was constructed containing a frameshift mutation within fp25, which results in virus stocks with higher infectious titres. This improved in vitro transduction when compared to control BacMams. Additionally, incorporating a truncated vesicular stomatitis virus G protein increased transduction efficacy and production of EGFP and BCL2 in human kidney (HK-2) and pancreatic islet β cells (EndoC βH3). Lastly, we have shown that our optimized BacMam vector can deliver and express egfp in intact pancreatic islet cells from human cadaveric donors. These results confirm that BacMam vectors are a viable choice for providing delivery of transgenes to pancreatic islet cells.
Collapse
Affiliation(s)
- Leo P Graves
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
- Oxford Expression Technologies Ltd., Bioinnovation Hub, Gipsy Lane Campus, Oxford OX3 0BP, UK.
| | - Mine Aksular
- Oxford Expression Technologies Ltd., Bioinnovation Hub, Gipsy Lane Campus, Oxford OX3 0BP, UK.
| | - Riyadh A Alakeely
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
- Department of Biotechnology, College of Sciences, Baghdad University, Baghdad 10071, Iraq.
| | - Daniel Ruiz Buck
- Oxford Expression Technologies Ltd., Bioinnovation Hub, Gipsy Lane Campus, Oxford OX3 0BP, UK.
| | - Adam C Chambers
- Oxford Expression Technologies Ltd., Bioinnovation Hub, Gipsy Lane Campus, Oxford OX3 0BP, UK.
| | - Fernanda Murguia-Meca
- Centre for Molecular and Cell-Based Therapeutics SA de CV, Mexico City 15820, Mexico.
| | - Juan-Jose Plata-Muñoz
- Centre for Molecular and Cell-Based Therapeutics SA de CV, Mexico City 15820, Mexico.
| | - Stephen Hughes
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Robert D Possee
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
- Oxford Expression Technologies Ltd., Bioinnovation Hub, Gipsy Lane Campus, Oxford OX3 0BP, UK.
| | - Linda A King
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| |
Collapse
|
2
|
Hitchman E, Hitchman RB, King LA. BacMam Delivery of a Protective Gene to Reduce Renal Ischemia-Reperfusion Injury. Hum Gene Ther 2016; 28:747-756. [PMID: 28042948 DOI: 10.1089/hum.2016.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury remains the primary contributor to delayed graft function in kidney transplantation. The beneficial application of manganese superoxide dismutase (sod), delivered by a BacMam vector, against renal I/R injury has not been evaluated previously. Therefore, this study overexpressed sod-2 in proximal tubular epithelial (HK-2) cells and porcine kidney organs during simulated renal I/R injury. Incubation of HK-2 cells with antimycin A and 2-deoxyglucose resulted in a significant decrease in intracellular adenosine triphosphate (ATP) levels; following reperfusion, ATP levels significantly increased over time in cells overexpressing sod-2. In addition, lactate dehydrogenase (LDH) release declined over 72 h in BacMam-transduced injured cells. Ex vivo delivery of sod-2 significantly increased ATP levels in organs after 24 h of cold perfusion. In vitro and ex vivo results suggested that BacMam transduction successfully delivered sod-2, which reduced injury associated with I/R, by improving ATP cell content and decreasing LDH release with a subsequent increase in kidney tissue viability. These data provide further evidence for the potential application of BacMam as a gene delivery system for attenuating injury after cold preservation.
Collapse
Affiliation(s)
- Elisabetta Hitchman
- 1 Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University , Oxford, United Kingdom
| | - Richard B Hitchman
- 2 Oxford Expression Technologies Ltd. , BioInnovation Hub, Oxford, United Kingdom
| | - Linda A King
- 1 Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University , Oxford, United Kingdom
| |
Collapse
|
3
|
Condreay JP, Kost TA, Mickelson CA. Emerging Considerations in Virus-Based Gene Transfer Systems. BIOLOGICAL SAFETY 2016:221-246. [DOI: 10.1128/9781555819637.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Chang MO, Suzuki T, Kitajima M, Takaku H. Baculovirus Infection of Human Monocyte-Derived Dendritic Cells Restricts HIV-1 Replication. AIDS Res Hum Retroviruses 2015; 31:1023-31. [PMID: 26178669 DOI: 10.1089/aid.2015.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acquired immune deficiency syndrome (AIDS) is mainly caused by infection with human immunodeficiency virus-1 (HIV-1) and still poses a global threat for which we lack a protective or therapeutic vaccine. Dendritic cells (DCs) play a major role in the onset of HIV infection, providing one of the primary sites of HIV replication, and also act as viral reservoirs in vivo. Previous studies have shown that baculovirus (BV) induces strong host immune responses against infections and malignancies. In this study, we infected human monocyte-derived DCs with recombinant BV (AcCAG-gag) and showed that AcCAG-gag-infected human DCs underwent maturation and produced interferon alpha and other proinflammatory cytokines accompanied by increases in the mRNA and protein expression levels of APOBEC3 (A3A, A3F, and A3G), proteins associated with the inhibition of HIV-1 replication. Surprisingly, HIV-1 inhibition is also observed in human DCs infected with a wild-type BV, as determined by the production of inflammatory cytokines, the expression of A3, and a reduction in the p24 level. Our findings outline the mechanism underlying the inhibition of HIV-1 in BV-infected human DCs and pave the way for the use of BV as an effective tool for immunotherapy against HIV-1.
Collapse
Affiliation(s)
- Myint Oo Chang
- 1 High Technology Research Centre, Chiba Institute of Technology , Chiba, Japan
| | - Tomoyuki Suzuki
- 2 Department of Life and Environmental Sciences, Chiba Institute of Technology , Chiba, Japan
| | - Masayuki Kitajima
- 2 Department of Life and Environmental Sciences, Chiba Institute of Technology , Chiba, Japan
- 3 Department of Immunology and Pathology, Research Institute National Center for Global Health and Medicine , Chiba, Japan
| | - Hiroshi Takaku
- 1 High Technology Research Centre, Chiba Institute of Technology , Chiba, Japan
- 2 Department of Life and Environmental Sciences, Chiba Institute of Technology , Chiba, Japan
- 4 Research Institute, Chiba Institute of Technology , Chiba, Japan
| |
Collapse
|
5
|
Protection against Amoebic Liver Abscess in Hamster by Intramuscular Immunization with an Autographa californica Baculovirus Driving the Expression of the Gal-Lectin LC3 Fragment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:760598. [PMID: 26090442 PMCID: PMC4452260 DOI: 10.1155/2015/760598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022]
Abstract
In a previous study, we demonstrated that oral immunization using Autographa californica baculovirus driving the expression of the Gal-lectin LC3 fragment (AcNPV-LC3) of Entamoeba histolytica conferred protection against ALA development in hamsters. In this study, we determined the ability of AcNPV-LC3 to protect against ALA by the intramuscular route as well as the liver immune response associated with protection. Results showed that 55% of hamsters IM immunized with AcNPV-LC3 showed sterile protection against ALA, whereas other 20% showed reduction in the size and extent of abscesses, resulting in some protection in 75% of animals compared to the sham control group. Levels of protection showed a linear correlation with the development and intensity of specific antiamoeba cellular and humoral responses, evaluated in serum and spleen of hamsters, respectively. Evaluation of the Th1/Th2 cytokine patterns expressed in the liver of hamsters showed that sterile protection was associated with the production of high levels of IFNγ and IL-4. These results suggest that the baculovirus system is equally efficient by the intramuscular as well as the oral routes for ALA protection and that the Gal-lectin LC3 fragment is a highly protective antigen against hepatic amoebiasis through the local induction of IFNγ and IL-4.
Collapse
|
6
|
Serrano A, Pijlman GP, Vlak JM, Muñoz D, Williams T, Caballero P. Identification of Spodoptera exigua nucleopolyhedrovirus genes involved in pathogenicity and virulence. J Invertebr Pathol 2015; 126:43-50. [PMID: 25644432 DOI: 10.1016/j.jip.2015.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 11/16/2022]
Abstract
Genome sequence analysis of seven different Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) isolates that differed in insecticidal phenotype permitted the identification of genes likely to be involved in pathogenicity of occlusion bodies (OBs) and speed of kill (virulence) of this virus: se4 (hoar), se5 (unknown function), se28 (unknown function), se76 (cg30), se87 (p26) and se129 (p26). To study the role of these genes experimentally on the insecticidal phenotype, a bacmid-based recombination system was constructed to delete selected genes from a SeMNPV isolate, VT-SeAL1, designated as SeBacAL1. All of the knockout viruses were viable and the repair viruses behaved like the wild-type control, vSeBacAL1. Deletion of se4, se5, se76 and se129 resulted in decreased OB pathogenicity compared to vSeBacAL1 OBs. In contrast, deletion of se87 did not significantly affect OB pathogenicity, whereas deletion of se28 resulted in significantly increased OB pathogenicity. Deletion of se4, se28, se76, se87 and se129 did not affect speed of kill compared to the bacmid vSeBacAL1, whereas speed of kill was significantly extended following deletion of se5 and in the wild-type isolate (SeAL1), compared to that of the bacmid. Therefore, biological assays confirmed that several genes had effects on virus insecticidal phenotype. Se5 is an attractive candidate gene for further studies, as it affects both biological parameters of this important biocontrol virus.
Collapse
Affiliation(s)
- Amaya Serrano
- Instituto de Agrobiotecnología, CSIC-UPNA, Avda de Pamplona 123, 31192 Mutilva, Spain; Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Delia Muñoz
- Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | | | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA, Avda de Pamplona 123, 31192 Mutilva, Spain; Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain.
| |
Collapse
|
7
|
Huynh HT, Tran TTB, Chan LCL, Nielsen LK, Reid S. Effect of the peak cell density of recombinant AcMNPV-infected Hi5 cells on baculovirus yields. Appl Microbiol Biotechnol 2014; 99:1687-700. [PMID: 25472440 DOI: 10.1007/s00253-014-6260-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 11/27/2022]
Abstract
The phenomenon of the cell density effect is not readily explained by an obvious nutrient limitation, and a recent study has suggested that for recombinant Autographa californica multiple nucleopolyhedrovirus (rAcMNPV)-infected Sf9 cells, a drop in messenger RNA (mRNA) levels may be sufficient to explain the cell density effect for this system. The current study aims to investigate the response in cell-specific yields (viral DNA (vDNA), LacZ mRNA and β-galactosidase (β-Gal) protein) with increasing infection cell density (ICD) for rAcMNPV-infected Hi5 cells, where the rAcMNPV expresses the β-Gal gene under control of the polyhedral promoter. Hi5 cells in suspension culture of Express Five® medium were synchronously infected with a rAcMNPV at multiple ICDs between 0.5 and 6 × 10(6) cells/mL and a multiplicity of infection of 10 plaque-forming units (PFU)/cell either in the original or fresh medium conditions. There were negative correlations between the three key virus infection indicators (vDNA, mRNA and β-Gal) and the peak cell density (PCD). However, unlike infected Sf9 cells, the yield decline started at the lowest PCD investigated (0.6 × 10(6) cells/mL). Generally, the yield decline with increasing PCD was most pronounced for β-Gal followed by mRNA and was more moderate for vDNA. The decline was significantly reduced but not totally arrested when fresh medium replacement was used. The results suggest that the reduction in recombinant protein-specific yields at high PCDs is associated with limitations during the up-stream processes of replication and transcription rather than entirely caused by limitations during translation. In addition, low production rates at late infection stages of moderate to high ICDs are a probable cause of the cell density effect.
Collapse
Affiliation(s)
- Hoai T Huynh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia,
| | | | | | | | | |
Collapse
|
8
|
Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y. Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 2014; 30:1-18. [PMID: 24265112 DOI: 10.1002/btpr.1842] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/21/2022]
Abstract
The baculovirus-insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed.
Collapse
|
9
|
Au S, Wu W, Panté N. Baculovirus nuclear import: open, nuclear pore complex (NPC) sesame. Viruses 2013; 5:1885-900. [PMID: 23881277 PMCID: PMC3738967 DOI: 10.3390/v5071885] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 01/16/2023] Open
Abstract
Baculoviruses are one of the largest viruses that replicate in the nucleus of their host cells. During infection, the rod-shape, 250-nm long nucleocapsid delivers its genome into the nucleus. Electron microscopy evidence suggests that baculoviruses, specifically the Alphabaculoviruses (nucleopolyhedroviruses) and the Betabaculoviruses (granuloviruses), have evolved two very distinct modes for doing this. Here we review historical and current experimental results of baculovirus nuclear import studies, with an emphasis on electron microscopy studies employing the prototypical baculovirus Autographa californica multiple nucleopolyhedrovirus infecting cultured cells. We also discuss the implications of recent studies towards theories of nuclear transport mechanisms.
Collapse
Affiliation(s)
| | | | - Nelly Panté
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-822-3369; Fax: +1-604-822-2416
| |
Collapse
|
10
|
Breitenbach JE, El-Sheikh ESA, Harrison RL, Rowley DL, Sparks ME, Gundersen-Rindal DE, Popham HJR. Determination and analysis of the genome sequence of Spodoptera littoralis multiple nucleopolyhedrovirus. Virus Res 2012; 171:194-208. [PMID: 23219924 DOI: 10.1016/j.virusres.2012.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022]
Abstract
The Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV), a pathogen of the Egyptian cotton leaf worm S. littoralis, was subjected to sequencing of its entire DNA genome and bioassay analysis comparing its virulence to that of other baculoviruses. The annotated SpliMNPV genome of 137,998 bp was found to harbor 132 open reading frames and 15 homologous repeat regions. Four unique genes not present in SpltMNPV were identified, as were 14 genes that were absent or translocated by comparison. Bioassay analysis of experimentally infected Spodoptera frugiperda revealed an extended killing time for SpliMNPV as compared to S. frugiperda MNPV (SfMNPV), but a level of mortality similar to that caused by infection with SfMNPV and superior to that of Autographa californica MNPV (AcMNPV). Although extensive similarity was observed between the genome structure and predicted translation products of SpliMNPV and Spodoptera litura MNPV (SpltMNPV), genetic distances between isolates of SpliMNPV and SpltMNPV suggest that they are in fact different species of genus Alphabaculovirus.
Collapse
Affiliation(s)
- Jonathan E Breitenbach
- Biological Control of Insects Research Laboratory, USDA Agricultural Research Service, Columbia, MO, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Lee JM, Kawakami N, Mon H, Mitsunobu H, Iiyama K, Ninaki S, Maenaka K, Park EY, Kusakabe T. Establishment of a Bombyx mori nucleopolyhedrovirus (BmNPV) hyper-sensitive cell line from the silkworm e21 strain. Biotechnol Lett 2012; 34:1773-9. [DOI: 10.1007/s10529-012-0971-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
12
|
Rivera-Gonzalez GC, Swift SL, Dussupt V, Georgopoulos LJ, Maitland NJ. Baculoviruses as gene therapy vectors for human prostate cancer. J Invertebr Pathol 2011; 107 Suppl:S59-70. [PMID: 21784232 DOI: 10.1016/j.jip.2011.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/10/2011] [Indexed: 12/13/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in ageing men in the western world. While the primary cancers can be treated with androgen ablation, radiotherapy and surgery, recurrent castration resistant cancers have an extremely poor prognosis, hence promoting research that could lead to a better treatment. Targeted therapeutic gene therapy may provide an attractive option for these patients. By exploiting the natural ability of viruses to target and transfer their genes into cancer cells, either naturally or after genetic manipulation, new generations of biological control can be developed. In this review we present the advantages and practicalities of using baculovirus as a vector for prostate cancer gene therapy and provide evidence for the potential of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) as a safer alternative vehicle for targeting cancer cells. Strategies to target baculovirus binding specifically to prostate cell surfaces are also presented. The large insertion capacity of baculoviruses also permits restricted, prostate-specific gene expression of therapeutic genes by cloning extended human transcriptional control sequences into the baculovirus genome.
Collapse
|
13
|
van Oers MM, King LA. The application of baculoviruses in human and veterinary medicine: an overview. Preface. J Invertebr Pathol 2011; 107 Suppl:S1-2. [PMID: 21784224 DOI: 10.1016/j.jip.2011.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
14
|
Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 2011; 107 Suppl:S3-15. [PMID: 21784228 DOI: 10.1016/j.jip.2011.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
|