1
|
Archer J, Hurst GDD, Hornett EA. Male-killer symbiont screening reveals novel associations in Adalia ladybirds. Access Microbiol 2023; 5:acmi000585.v3. [PMID: 37601442 PMCID: PMC10436010 DOI: 10.1099/acmi.0.000585.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/18/2023] [Indexed: 08/22/2023] Open
Abstract
While male-killing bacteria are known to infect across arthropods, ladybird beetles represent a hotspot for these symbioses. In some host species, there are multiple different symbionts that vary in presence and frequency between populations. To further our understanding of spatial and frequency variation, we tested for the presence of three male-killing bacteria: Wolbachia , Rickettsia and Spiroplasma , in two Adalia ladybird species from a previously unexplored UK population. The two-spot ladybird, A. bipunctata, is known to harbour all three male-killers, and we identified Spiroplasma infection in the Merseyside population for the first time. However, in contrast to previous studies on two-spot ladybirds from continental Europe, evidence from egg-hatch rates indicates the Spiroplasma strain present in the Merseyside population does not cause embryonic male-killing. In the related ten-spot ladybird, A. decempunctata, there is only one previous record of a male-killing symbiont, a Rickettsia , which we did not detect in the Merseyside sample. However, PCR assays indicated the presence of a Spiroplasma in a single A. decempunctata specimen. Marker sequence indicated that this Spiroplasma was divergent from that found in sympatric A. bipunctata. Genome sequencing of the Spiroplasma -infected A. decempunctata additionally revealed the presence of cobionts in the form of a Centistes parasitoid wasp and the parasitic fungi Beauveria. Further study of A. decempunctata from this population is needed to resolve whether it is the ladybird or wasp cobiont that harbours Spiroplasma , and to establish the phenotype of this strain. These data indicate first that microbial symbiont phenotype should not be assumed from past studies conducted in different locations, and second that cobiont presence may confound screening studies aimed to detect the frequency of a symbiont in field collected material from a focal host species.
Collapse
Affiliation(s)
- Jack Archer
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Emily A. Hornett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
2
|
Li YH, Huang YF, Chen TH, Wu SS, Tang HC, Hsiao CY, Huang LC, Chang JC, Chiu KP, Nai YS. Comparison of gut microbiota of healthy and diseased walking sticks, Phasmotaenia lanyuhensis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21749. [PMID: 33075172 DOI: 10.1002/arch.21749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Research on gut microbiota of phytophagous insects has shown to be important for the physiological functions of insect hosts; however, little is known about the changes in gut microbiota when they are suffering from environmental stress or pathogen infections. During rearing of Phasmotaenia lanyuhensis (Phasmatodea: Phasmatidae), sluggish locomotion was usually followed by the death of the insect with a symptom of melanization in the front part of the abdomen. Therefore, the abnormal individuals were initially classified into moribund, light- and serious-symptom based on the level of abnormal physiological circumstances and melanization. The gut microbiota of these samples were further investigated by 16S metagenomic sequencing and the differences in bacterial abundance and structure of bacterial community were analyzed. A decrease in microbiota diversity was observed in the diseased P. lanyuhensis, with the abundance of phyla Proteobacteria and Firmicute relatively higher compared to those without symptom. Interestingly, principal component analysis based on the bacterial richness was correlated to the level of melanization symptom in the diseased P. lanyuhensis, suggested the change in bacterial microbiota involved in this abnormal circumstance. However, the factor that caused the initial alternation of microbiota remains to be identified. Additionally, the lack of bacterial diversity (i.e., absence of Meiothermus and Nubsella spp.) in P. lanyuhensis might reduce the fitness for surviving. This report provided the comprehensive microbiota analysis for P. lanyuhensis and concluded that either the relative abundance or the bacterial diversity of microbiota in the insect digestive system may influence the physiological functions of phytophagous insects.
Collapse
Affiliation(s)
- Yi-Hsuan Li
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Feng Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzu-Han Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shin-Shan Wu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Chieh Tang
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Chung-Yi Hsiao
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Lung-Chun Huang
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Yeoman CJ, Brutscher LM, Esen ÖC, Ibaoglu F, Fowler C, Eren AM, Wanner K, Weaver DK. Genome-resolved insights into a novel Spiroplasma symbiont of the Wheat Stem Sawfly ( Cephus cinctus). PeerJ 2019; 7:e7548. [PMID: 31523509 PMCID: PMC6716498 DOI: 10.7717/peerj.7548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Arthropods often have obligate relationships with symbiotic microbes, and recent investigations have demonstrated that such host-microbe relationships could be exploited to suppress natural populations of vector carrying mosquitos. Strategies that target the interplay between agricultural pests and their symbionts could decrease the burden caused by agricultural pests; however, the lack of comprehensive genomic insights into naturally occurring microbial symbionts presents a significant bottleneck. Here we employed amplicon surveys, genome-resolved metagenomics, and scanning electron microscopy to investigate symbionts of the wheat stem sawfly (Cephus cinctus), a major pest that causes an estimated $350 million dollars or more in wheat yield losses in the northwestern United States annually. Through 16S rRNA gene sequencing of two major haplotypes and life stages of wheat stem sawfly, we show a novel Spiroplasma species is ever-present and predominant, with phylogenomic analyses placing it as a member of the ixodetis clade of mollicutes. Using state-of-the-art metagenomic assembly and binning strategies we were able to reconstruct a 714 Kb, 72.7%-complete Spiroplasma genome, which represents just the second draft genome from the ixodetis clade of mollicutes. Functional annotation of the Spiroplasma genome indicated carbohydrate-metabolism involved PTS-mediated import of glucose and fructose followed by glycolysis to lactate, acetate, and propionoate. The bacterium also encoded biosynthetic pathways for essential vitamins B2, B3, and B9. We identified putative Spiroplasma virulence genes: cardiolipin and chitinase. These results identify a previously undescribed symbiosis between wheat stem sawfly and a novel Spiroplasma sp., availing insight into their molecular relationship, and may yield new opportunities for microbially-mediated pest control strategies.
Collapse
Affiliation(s)
- Carl J Yeoman
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America
| | - Laura M Brutscher
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America.,Department of Microbiology & Immunology, Montana State University, Bozeman, MT, United States of America
| | - Özcan C Esen
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Furkan Ibaoglu
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America.,Department of Microbiology & Immunology, Montana State University, Bozeman, MT, United States of America
| | - Curtis Fowler
- Department of Animal & Range Sciences, Montana State University, Bozeman, MT, United States of America
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, United States of America.,Marine Biological Laboratory, The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachuetts, United States of America
| | - Kevin Wanner
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, United States of America
| | - David K Weaver
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States of America
| |
Collapse
|
4
|
Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Res Int 2019; 125:108527. [PMID: 31554102 DOI: 10.1016/j.foodres.2019.108527] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 02/08/2023]
Abstract
Because of their positive nutritional characteristics and low environmental impact, edible insects might be considered a 'food of the future'. However, there are safety concerns associated with the consumption of insects, such as contaminating chemical and biological agents. The possible presence of pathogenic and toxigenic microorganisms is one of the main biological hazards associated with edible insects. This review presents an overview of the microbiota of edible insects, highlighting the potential risks for human health. Detailed information on the microbiota of edible insects from literature published in 2000-2019 is presented. These data show complex ecosystems, with marked variations in microbial load and diversity, among edible insects as well as stable and species-specific microbiota for some of the most popular edible insect species, such as mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria). Raw edible insects generally contain high numbers of mesophilic aerobes, bacterial endospores or spore-forming bacteria, Enterobacteriaceae, lactic acid bacteria, psychrotrophic aerobes, and fungi, and potentially harmful species (i.e. pathogenic, mycotoxigenic, and spoilage microbes) may be present. Several studies have focused on reducing the microbial contamination of edible insects by applying treatments such as starvation, rinsing, thermal treatments, chilling, drying, fermentation, and marination, both alone and, sometimes, in combination. Although these studies show that various heat treatments were the most efficient methods for reducing microbial numbers, they also highlight the need for species-specific mitigation strategies. The feasibility of using edible insects as ingredients in the food industry in the development of innovative insect-based products has been explored; although, in some cases, the presence of spore-forming bacteria and other food-borne pathogens is a concern. Recent studies have shown that a risk assessment of edible insects should also include an evaluation of the incidence of antibiotic-resistance (AR) genes and antibiotic-resistant microorganisms in the production chain. Finally, as proposed in the literature, microbial hazards should be limited through the implementation of good hygienic practices during rearing, handling, processing, and storage, as well as the implementation of an appropriate HACCP system for edible insect supply chains. Another issue frequently reported in the literature is the need for a legislative framework for edible insect production, commercialisation, and trading, as well as the need for microbiological criteria specifically tailored for edible insects. Microbiological criteria like those already been established for the food safety and hygiene (e.g. those in the European Union food law) of different food categories (e.g. ready-to-eat products) could be applied to edible insect-based products.
Collapse
|
5
|
Lin M, Zeng C, Jia X, Zhai S, Li Z, Ma Y. The composition and structure of the intestinal microflora of
Anguilla marmorata
at different growth rates: a deep sequencing study. J Appl Microbiol 2019; 126:1340-1352. [DOI: 10.1111/jam.14174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- M. Lin
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| | | | | | | | - Z.Q. Li
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| | - Y. Ma
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| |
Collapse
|
6
|
Babczyńska A, Sułowicz S, Talik E, Hermyt M, Bednarek A, Sawadro M, Molenda A. Sterile Capsule-Egg Cocoon Covering Constitutes an Antibacterial Barrier for Spider Parasteatoda tepidariorum Embryos. Physiol Biochem Zool 2019; 92:115-124. [PMID: 30601104 DOI: 10.1086/701390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coexistence of organisms and pathogens has resulted in the evolution of efficient antimicrobial defense, especially at the embryonic stage. This investigation aimed to substantiate the hypothesis that the layers of silk in a spider cocoon play a role in the immunity of the embryos against microorganisms present in the external environment. A two-step interdisciplinary attempt has been made. First, the eggs and empty cocoons of the spider Parasteatoda tepidariorum were incubated on lysogeny broth agar media for 3 d. In the samples of eggs, no growth of bacteria was detected. This indicated that the eggs inside cocoons were sterile. Therefore, in the second step, the cocoons and egg surface were analyzed using SEM, TEM, and LM. The obtained images demonstrated that both inner and outer layers of the silk are built of threads of the same diameter, set in an irregular manner, and randomly clustered into groups. The threads in the outer layer were packed more densely than in the inner one. TEM analysis revealed threads of two types of fibrils and their arrangement. The resultant thread tangle of the cocoon, possibly correlated with the ultrastructure of the fibers, seems to be an example of a structure-function relationship playing a crucial ecoimmunological role in spider embryonic development.
Collapse
|
7
|
Osimani A, Milanović V, Cardinali F, Garofalo C, Clementi F, Pasquini M, Riolo P, Ruschioni S, Isidoro N, Loreto N, Franciosi E, Tuohy K, Petruzzelli A, Foglini M, Gabucci C, Tonucci F, Aquilanti L. The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. Int J Food Microbiol 2018. [PMID: 29525619 DOI: 10.1016/j.ijfoodmicro.2018.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tenebrio molitor represents one of the most popular species used for the large-scale conversion of plant biomass into protein and is characterized by high nutritional value. In the present laboratory study, the bacterial biota characterizing a pilot production chain of fresh T. molitor larvae was investigated. To this end, different batches of fresh mealworm larvae, their feeding substrate (wheatmeal) and frass were analyzed by viable microbial counts, PCR-DGGE and Illumina sequencing. Moreover, the occurrence of Coxiella burnetii, Pseudomonas aeruginosa and Shiga toxin-producing E. coli (STEC) was assessed through qualitative real-time PCR assays. Microbial viable counts highlighted low microbial contamination of the wheatmeal, whereas larvae and frass were characterized by high loads of Enterobacteriaceae, lactic acid bacteria, and several species of mesophilic aerobes. Spore-forming bacteria were detected to a lesser extent in all the samples. The combined molecular approach used to profile the microbiota confirmed the low microbial contamination of wheatmeal and allowed the detection of Enterobacter spp., Erwinia spp., Enterococcus spp. and Lactococcus spp. as dominant genera in both larvae and frass. Moreover, Klebsiella spp., Pantoea spp., and Xenorhabdus spp. were found to be in the minority. Entomoplasmatales (including Spiroplasma spp.) constituted a major fraction of the microbiota of one batch of larvae. From the real-time PCR assays, no sample was positive for either C. burnetii or STEC, whereas P. aeruginosa was detected in one sample of frass. Based on the overall results, two sources of microbial contamination were hypothesized, namely feeding with wheatmeal and vertical transmission of microorganisms from mother to offspring. Since mealworms are expected to be eaten as a whole, the overall outcomes collected in this laboratory study discourage the consumption of fresh mealworm larvae. Moreover, microbial loads and the absence of potential pathogens known to be associated with this insect species should be carefully assessed in order to reduce the minimum risk for consumers, by identifying the most opportune processing methods (e.g., boiling, frying, drying, etc.).
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Nunzio Isidoro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Nino Loreto
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elena Franciosi
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Kieran Tuohy
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Martina Foglini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Claudia Gabucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
8
|
Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations. Sci Rep 2017; 7:4699. [PMID: 28680117 PMCID: PMC5498494 DOI: 10.1038/s41598-017-04740-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023] Open
Abstract
Profiling of wild and laboratory tsetse populations using 16S rRNA gene amplicon sequencing allowed us to examine whether the "Wigglesworthia-Sodalis-Wolbachia dogma" operates across species and populations. The most abundant taxa, in wild and laboratory populations, were Wigglesworthia (the primary endosymbiont), Sodalis and Wolbachia as previously characterized. The species richness of the microbiota was greater in wild than laboratory populations. Spiroplasma was identified as a new symbiont exclusively in Glossina fuscipes fuscipes and G. tachinoides, members of the palpalis sub-group, and the infection prevalence in several laboratory and natural populations was surveyed. Multi locus sequencing typing (MLST) analysis identified two strains of tsetse-associated Spiroplasma, present in G. f. fuscipes and G. tachinoides. Spiroplasma density in G. f. fuscipes larva guts was significantly higher than in guts from teneral and 15-day old male and female adults. In gonads of teneral and 15-day old insects, Spiroplasma density was higher in testes than ovaries, and was significantly higher density in live versus prematurely deceased females indicating a potentially mutualistic association. Higher Spiroplasma density in testes than in ovaries was also detected by fluorescent in situ hybridization in G. f. fuscipes.
Collapse
|
9
|
The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol 2017; 62:15-22. [DOI: 10.1016/j.fm.2016.09.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/31/2023]
|
10
|
Schlüter O, Rumpold B, Holzhauser T, Roth A, Vogel RF, Quasigroch W, Vogel S, Heinz V, Jäger H, Bandick N, Kulling S, Knorr D, Steinberg P, Engel KH. Safety aspects of the production of foods and food ingredients from insects. Mol Nutr Food Res 2016; 61. [PMID: 27623740 DOI: 10.1002/mnfr.201600520] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 11/11/2022]
Abstract
At present, insects are rarely used by the European food industry, but they are a subject of growing interest as an alternative source of raw materials. The risks associated with the use of insects in the production of foods and food ingredients have not been sufficiently investigated. There is a lack of scientifically based knowledge of insect processing to ensure food safety, especially when these processes are carried out on an industrial scale. This review focuses on the safety aspects that need to be considered regarding the fractionation of insects for the production of foods and food ingredients.
Collapse
Affiliation(s)
- Oliver Schlüter
- Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, Germany
| | - Birgit Rumpold
- Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, Germany
| | | | - Angelika Roth
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rudi F Vogel
- Chair of Technical Microbiology, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | | | - Stephanie Vogel
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Volker Heinz
- German Institute of Food Technologies, Quakenbrück, Germany
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria
| | - Nils Bandick
- Unit Food Technologies, Supply Chains and Food Defense Department Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Sabine Kulling
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany
| | - Dietrich Knorr
- Department of Food Biotechnology and Food Process Engineering, Technical University of Berlin, Berlin, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Karl-Heinz Engel
- Chair of General Food Technology, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|