1
|
Fajardo C, De Donato M, Macedo M, Charoonnart P, Saksmerprome V, Yang L, Purton S, Mancera JM, Costas B. RNA Interference Applied to Crustacean Aquaculture. Biomolecules 2024; 14:1358. [PMID: 39595535 PMCID: PMC11592254 DOI: 10.3390/biom14111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
RNA interference (RNAi) is a powerful tool that can be used to specifically knock-down gene expression using double-stranded RNA (dsRNA) effector molecules. This approach can be used in aquaculture as an investigation instrument and to improve the immune responses against viral pathogens, among other applications. Although this method was first described in shrimp in the mid-2000s, at present, no practical approach has been developed for the use of dsRNA in shrimp farms, as the limiting factor for farm-scale usage in the aquaculture sector is the lack of cost-effective and simple dsRNA synthesis and administration procedures. Despite these limitations, different RNAi-based approaches have been successfully tested at the laboratory level, with a particular focus on shrimp. The use of RNAi technology is particularly attractive for the shrimp industry because crustaceans do not have an adaptive immune system, making traditional vaccination methods unfeasible. This review summarizes recent studies and the state-of-the-art on the mechanism of action, design, use, and administration methods of dsRNA, as applied to shrimp. In addition, potential constraints that may hinder the deployment of RNAi-based methods in the crustacean aquaculture sector are considered.
Collapse
Affiliation(s)
- Carlos Fajardo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain;
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
| | - Marcos De Donato
- Center for Aquaculture Technologies (CAT), San Diego, CA 92121, USA;
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Querétaro 76130, Mexico
| | - Marta Macedo
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), 4050-313 Porto, Portugal
| | - Patai Charoonnart
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Luyao Yang
- Department of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK; (L.Y.); (S.P.)
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK; (L.Y.); (S.P.)
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain;
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Alam MS, Islam MN, Das M, Islam SF, Rabbane MG, Karim E, Roy A, Alam MS, Ahmed R, Kibria ASM. RNAi-Based Therapy: Combating Shrimp Viral Diseases. Viruses 2023; 15:2050. [PMID: 37896827 PMCID: PMC10612085 DOI: 10.3390/v15102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Shrimp aquaculture has become a vital industry, meeting the growing global demand for seafood. Shrimp viral diseases have posed significant challenges to the aquaculture industry, causing major economic losses worldwide. Conventional treatment methods have proven to be ineffective in controlling these diseases. However, recent advances in RNA interference (RNAi) technology have opened new possibilities for combating shrimp viral diseases. This cutting-edge technology uses cellular machinery to silence specific viral genes, preventing viral replication and spread. Numerous studies have shown the effectiveness of RNAi-based therapies in various model organisms, paving the way for their use in shrimp health. By precisely targeting viral pathogens, RNAi has the potential to provide a sustainable and environmentally friendly solution to combat viral diseases in shrimp aquaculture. This review paper provides an overview of RNAi-based therapy and its potential as a game-changer for shrimp viral diseases. We discuss the principles of RNAi, its application in combating viral infections, and the current progress made in RNAi-based therapy for shrimp viral diseases. We also address the challenges and prospects of this innovative approach.
Collapse
Affiliation(s)
- Md. Shahanoor Alam
- Department of Genetics and Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Mohammad Nazrul Islam
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Mousumi Das
- Department of Aquaculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Sk. Farzana Islam
- Department of Fisheries (DoF), Government of the People’s Republic of Bangladesh, Matshya Bhaban, Ramna, Dhaka 1000, Bangladesh; (S.F.I.); (R.A.)
| | - Md. Golam Rabbane
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Ehsanul Karim
- Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh;
| | - Animesh Roy
- Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Mohammad Shafiqul Alam
- Department of Genetics and Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Raju Ahmed
- Department of Fisheries (DoF), Government of the People’s Republic of Bangladesh, Matshya Bhaban, Ramna, Dhaka 1000, Bangladesh; (S.F.I.); (R.A.)
| | - Abu Syed Md. Kibria
- Department of Aquaculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh;
| |
Collapse
|
3
|
Abo-Al-Ela HG. RNA Interference in Aquaculture: A Small Tool for Big Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4343-4355. [PMID: 33835783 DOI: 10.1021/acs.jafc.1c00268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For decades, the tight regulatory functions of DNA and RNA have been the focus of extensive research with the goal of harnessing RNA molecules (e.g., microRNA and small interfering RNA) to control gene expression and to study biological functions. RNA interference (RNAi) has shown evidence of mediating gene expression, has been utilized to study functional genomics, and recently has potential in therapeutic agents. RNAi is a natural mechanism and a well-studied tool that can be used to silence specific genes. This method is also used in aquaculture as a research tool and to enhance immune responses. RNAi methods do have their limitations (e.g., immune triggering); efficient and easy-to-use RNAi methods for large-scale applications need further development. Despite these limitations, RNAi methods have been successfully used in aquaculture, in particular shrimp. This review discusses the uses of RNAi in aquaculture, such as immune- and production-related issues and the possible limitations that may hinder the application of RNAi in the aquaculture industry. Our challenge is to develop a highly potent in vivo RNAi delivery platform that could complete the desired action with minimal side effects and which can be applied on a large-scale with relatively little expense in the aquaculture industry.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| |
Collapse
|
4
|
Nucleic Acid Sensing in Invertebrate Antiviral Immunity. NUCLEIC ACID SENSING AND IMMUNITY - PART B 2019; 345:287-360. [DOI: 10.1016/bs.ircmb.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Sun Q, Jiang L, Guo H, Xia F, Wang B, Wang Y, Xia Q, Zhao P. Increased antiviral capacity of transgenic silkworm via knockdown of multiple genes on Bombyx mori bidensovirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:188-192. [PMID: 29944898 DOI: 10.1016/j.dci.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Bombyx mori bidensovirus (BmBDV) causes fatal flacherie disease leading to severe economic losses in sericultures. The BmDNV-Z genome contains two single-stranded DNA molecules, VD1 and VD2. For generating silkworm lines with antiviral properties, two transgenic RNA interference (RNAi) vectors were constructed. Open reading frames (ORFs) 1-4 of VD1 were knockdown by vector pb-BDV1 while ORF1a, ORF1b, and ORF3 of VD2 were knockdown by vector pb-BDV2. Transgenic silkworm lines BDV1-I and BDV2-I were generated via RNAi microinjection. Mortality rates of BDV1-I and BDV2-I were reduced by 45% and 39%, respectively, and quantitative PCR showed that VD1 and VD2 contents in BDV1-I and BDV2-I were significantly lower than in the non-transgenic line. However, economic traits showed no obvious differences. Thus, knockdown of multiple BmDNV-Z genes provides strong resistance to BDV1-I and BDV2-I lines, and these can be used in sericulture without hampering silk production.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China.
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Fei Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Bingbing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Yumei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Fernando S, Attasart P, Krishna SR, Withyachumnarnkul B, Vanichviriyakit R. Presence of Penaeus monodon densovirus in the ovary of chronically infected P. monodon subadults. DISEASES OF AQUATIC ORGANISMS 2018; 129:183-191. [PMID: 30154278 DOI: 10.3354/dao03241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Shrimp infected with Penaeus monodon densovirus (PmoDNV) usually display no specific gross signs, but heavy infections can kill postlarvae and retard juvenile growth. In the present study, samples of hepatopancreas, feces, gonads and hemolymph were isolated from male and female P. monodon subadults chronically infected by PmoDNV. Each sample of hepatopancreas and gonad was divided into 2 parts: one for PmoDNV detection by polymerase chain reaction (PCR), and the other for routine histology and immunohistochemistry. The frequency of positive findings via PCR assays was 92% in the hepatopancreas, 57% in feces, 50% in ovary, 35% in hemolymph and 0% in the testis. Using the densitometric value (DV) of the specific band for PmoDNV relative to that of the β-actin gene as an index of the viral load in the samples, no significant differences were observed among sample types and sexes. Hematoxylin-eosin staining of infected hepatopancreas revealed typical PmoDNV inclusions in the nuclei of infected cells. The ovaries with high DV (>1) contained various types of inclusions along the row of the follicular cells or possibly in the connective tissue cells surrounding the oocytes. Using immunohistochemistry with specific probes to detect PmoDNV proteins, a positive reaction was observed in viral inclusions found in infected hepatopancreas and in ovaries with high DV, specifically in the ovarian capsule, hemolymph, oocytes and nuclear inclusions. These results suggest that the localization of PmoDNV in P. monodon is not confined to the hepatopancreas, but rather that the virus can also occur in the ovary; hence, trans-ovarian, vertical transmission of the virus is highly possible.
Collapse
Affiliation(s)
- Sudini Fernando
- Aquaculture and Aquatic Resources Management, Asian Institute of Technology, Pathum Thani 12120, Thailand
| | | | | | | | | |
Collapse
|