1
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
2
|
Murphy C, Fernández Robledo JA, van Walsum GP. Perkinsus marinus in bioreactor: growth and a cost-reduced growth medium. J Ind Microbiol Biotechnol 2023; 50:kuad023. [PMID: 37669897 PMCID: PMC10500546 DOI: 10.1093/jimb/kuad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Perkinsus marinus (Perkinsea) is an osmotrophic facultative intracellular marine protozoan responsible for "Dermo" disease in the eastern oyster, Crassostrea virginica. In 1993 in vitro culture of P. marinus was developed in the absence of host cells. Compared to most intracellular protozoan parasites, the availability of P. marinus to grow in the absence of host cells has provided the basis to explore its use as a heterologous expression system. As the genetic toolbox is becoming available, there is also the need for larger-scale cultivation and lower-cost media formulations. Here, we took an industrial approach to scaled-up growth from a small culture flask to bioreactors, which required developing new cultivation parameters, including aeration, mixing, pH, temperature control, and media formulation. Our approach also enabled more real-time data collection on growth. The bioreactor cultivation method showed similar or accelerated growth rates of P. marinus compared to culture in T-flasks. Redox measurements indicated sufficient oxygen availability throughout the cultivation. Replacing fetal bovine serum with chicken serum showed no differences in the growth rate and a 60% reduction in the medium cost. This study opens the door to furthering P. marinus as a valid heterologous expression system by showing the ability to grow in bioreactors. ONE-SENTENCE SUMMARY Perkinsus marinus, a microbial parasite of oysters that could be useful for developing vaccines for humans, has been shown to grow well in laboratory equipment that can be expanded to commercial scale using a less expensive growth formula than usual laboratory practice.
Collapse
Affiliation(s)
- Caitlin Murphy
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | | | - G Peter van Walsum
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
3
|
Evaluation of the Ruditapes decussatus immune response after differential injected doses of Perkinsus olseni. J Invertebr Pathol 2022; 195:107849. [DOI: 10.1016/j.jip.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/05/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
4
|
Bogema DR, Yam J, Micallef ML, Gholipourkanani H, Go J, Jenkins C, Dang C. Draft genomes of Perkinsus olseni and Perkinsus chesapeaki reveal polyploidy and regional differences in heterozygosity. Genomics 2020; 113:677-688. [PMID: 33017625 DOI: 10.1016/j.ygeno.2020.09.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Perkinsus spp. parasites have significant impact on aquaculture and wild mollusc populations. We sequenced the genomes of five monoclonal isolates of Perkinsus olseni and one Perkinsus chesapeaki from international sources. Sequence analysis revealed similar levels of repetitive sequence within species, a polyploid genome structure, and substantially higher heterozygosity in Oceanian-sourced isolates. We also identified tandem replication of the rRNA transcriptional unit, with high strain variation. Characterized gene content was broadly similar amongst all Perkinsus spp. but P. olseni Oceanian isolates contained an elevated number of genes compared to other P. olseni isolates and cox3 could not be identified in any Perkinsus spp. sequence. Phylogenetics and average nucleotide identity scans were consistent with all P. olseni isolates being within one species. These are the first genome sequences generated for both P. olseni and P. chesapeaki and will allow future advances in diagnostic design and population genomics of these important aquatic parasites.
Collapse
Affiliation(s)
- Daniel R Bogema
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia.
| | - Jerald Yam
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia; The Ithree Institute, University of Technology Sydney, NSW 2007, Australia
| | - Melinda L Micallef
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Hosna Gholipourkanani
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| | - Jeffrey Go
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Cheryl Jenkins
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Cecile Dang
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
5
|
Hasanuzzaman AFM, Cao A, Ronza P, Fernández-Boo S, Rubiolo JA, Robledo D, Gómez-Tato A, Alvarez-Dios JA, Pardo BG, Villalba A, Martínez P. New insights into the Manila clam - Perkinsus olseni interaction based on gene expression analysis of clam hemocytes and parasite trophozoites through in vitro challenges. Int J Parasitol 2020; 50:195-208. [PMID: 32087247 DOI: 10.1016/j.ijpara.2019.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022]
Abstract
The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest global production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum-P. olseni interactions, we analysed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid understanding the response and interaction between R. philippinarum and P. olseni, and will contribute to developing effective control strategies for this threatening parasitosis.
Collapse
Affiliation(s)
- Abul Farah Md Hasanuzzaman
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 27002 Lugo, Spain; Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | - Paolo Ronza
- Departamento de Anatomía, Produción Animal e Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo 27002, Spain
| | - Sergio Fernández-Boo
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain; Centro Interdisciplinar de Investigação Marinha e Ambiental(CIIMAR), University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Juan Andrés Rubiolo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Diego Robledo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 27002 Lugo, Spain; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Antonio Gómez-Tato
- Departamento de Xeometría e Topoloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jose Antonio Alvarez-Dios
- Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Belén G Pardo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 27002 Lugo, Spain; Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela 15782, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology, Plentzia Marine Station (PIE-UPV/EHU), University of the Basque Country, 48620 Plentzia, Spain
| | - Paulino Martínez
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 27002 Lugo, Spain; Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, Santiago de Compostela 15782, Spain.
| |
Collapse
|
6
|
Schott EJ, Di Lella S, Bachvaroff TR, Amzel LM, Vasta GR. Lacking catalase, a protistan parasite draws on its photosynthetic ancestry to complete an antioxidant repertoire with ascorbate peroxidase. BMC Evol Biol 2019; 19:146. [PMID: 31324143 PMCID: PMC6642578 DOI: 10.1186/s12862-019-1465-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/24/2019] [Indexed: 01/06/2023] Open
Abstract
Background Antioxidative enzymes contribute to a parasite’s ability to counteract the host’s intracellular killing mechanisms. The facultative intracellular oyster parasite, Perkinsus marinus, a sister taxon to dinoflagellates and apicomplexans, is responsible for mortalities of oysters along the Atlantic coast of North America. Parasite trophozoites enter molluscan hemocytes by subverting the phagocytic response while inhibiting the typical respiratory burst. Because P. marinus lacks catalase, the mechanism(s) by which the parasite evade the toxic effects of hydrogen peroxide had remained unclear. We previously found that P. marinus displays an ascorbate-dependent peroxidase (APX) activity typical of photosynthetic eukaryotes. Like other alveolates, the evolutionary history of P. marinus includes multiple endosymbiotic events. The discovery of APX in P. marinus raised the questions: From which ancestral lineage is this APX derived, and what role does it play in the parasite’s life history? Results Purification of P. marinus cytosolic APX activity identified a 32 kDa protein. Amplification of parasite cDNA with oligonucleotides corresponding to peptides of the purified protein revealed two putative APX-encoding genes, designated PmAPX1 and PmAPX2. The predicted proteins are 93% identical, and PmAPX2 carries a 30 amino acid N-terminal extension relative to PmAPX1. The P. marinus APX proteins are similar to predicted APX proteins of dinoflagellates, and they more closely resemble chloroplastic than cytosolic APX enzymes of plants. Immunofluorescence for PmAPX1 and PmAPX2 shows that PmAPX1 is cytoplasmic, while PmAPX2 is localized to the periphery of the central vacuole. Three-dimensional modeling of the predicted proteins shows pronounced differences in surface charge of PmAPX1 and PmAPX2 in the vicinity of the aperture that provides access to the heme and active site. Conclusions PmAPX1 and PmAPX2 phylogenetic analysis suggests that they are derived from a plant ancestor. Plant ancestry is further supported by the presence of ascorbate synthesis genes in the P. marinus genome that are similar to those in plants. The localizations and 3D structures of the two APX isoforms suggest that APX fulfills multiple functions in P. marinus within two compartments. The possible role of APX in free-living and parasitic stages of the life history of P. marinus is discussed. Electronic supplementary material The online version of this article (10.1186/s12862-019-1465-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric J Schott
- Department of Microbiology & Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA.,Present address: University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA
| | - Santiago Di Lella
- Instituto de Química Biológica - Ciencias Exactas y Naturales, IQUIBICEN / CONICET, Departamento de Química Biológica, Fac. de Cs. Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Capital Federal, Argentina
| | - Tsvetan R Bachvaroff
- University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA
| | - L Mario Amzel
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Gerardo R Vasta
- Department of Microbiology & Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
7
|
Duarte SS, de Moura RO, da Silva PM. Effect of antiprotozoal molecules on hypnospores of Perkinsus spp. parasite. Exp Parasitol 2018; 192:25-35. [PMID: 30028986 DOI: 10.1016/j.exppara.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/30/2018] [Accepted: 07/15/2018] [Indexed: 11/19/2022]
Abstract
Perkinsus protozoan parasites have been associated with high mortality of bivalves worldwide, including Brazil. The use of antiproliferative drugs to treat the Perkinsosis is an unusual prophylactic strategy. However, because of their environment impact it could be used to control parasite proliferation in closed system, such as hatchery. This study evaluated the anti-Perkinsus activity potential of synthesized and commercial compounds. Viability of hypnospores of Perkinsus spp. was assessed in vitro. Cells were incubated with three 2-amino-thiophene (6AMD, 6CN, 5CN) and one acylhydrazone derivatives (AMZ-DCL), at the concentrations of 31.25; 62.5; 125; 250 and 500 μM and one commercial chlorinated phenoxy phenol derivative, triclosan (2, 5, 10 and 20 μM), for 24-48 h. Two synthetic molecules (6CN and AMZ-DCL) caused a significant decline (38 and 39%, respectively) in hypnospores viability, at the highest concentration (500 μM), after 48 h. Triclosan was the most cytotoxic compound, causing 100% of mortality at 20 μM after 24 h and at 10 μM after 48 h. Cytotoxic effects of the compounds 6CN, AMZ-DCL, and triclosan were investigated by measuring parasite's zoosporulation, morphological changes and metabolic activities (esterase activity, production of reactive oxygen species and lipid content). Results showed that zoosporulation occurred in few cell. Triclosan caused changes in the morphology of hypnospores. The 6CN and AMZ-DCL did not alter the metabolic activities studied whilst Triclosan significantly increased the production of reactive oxygen species and changed the amount and distribution of lipids in the hypnospores. These results suggest that three compounds had potential to be used as antiprotozoal drugs, although further investigation of their mechanism of action must be enlightened.
Collapse
Affiliation(s)
- Sâmia Sousa Duarte
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba -Campus I, 58051-900, João Pessoa, PB, Brazil.
| | - Ricardo Olímpio de Moura
- Laboratório de Síntese e Vetorização de Moléculas, Departamento de Farmácia, Universidade Estadual da Paraíba, 58070-450, João Pessoa, PB, Brazil.
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba -Campus I, 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
8
|
Farias ND, de Oliveira NFP, da Silva PM. Perkinsus infection is associated with alterations in the level of global DNA methylation of gills and gastrointestinal tract of the oyster Crassostrea gasar. J Invertebr Pathol 2017; 149:76-81. [PMID: 28800971 DOI: 10.1016/j.jip.2017.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Bivalves are filter feeders that obtain food from seawater that may contain infectious agents, such as the protozoan parasites Perkinsus marinus and P. olseni that are associated with massive mortalities responsible for losses in the aquaculture industry. Despite all physical and chemical barriers, microorganisms cross epithelia and infect host tissues to cause pathologies. Epigenetics mechanisms play important roles in a variety of human processes, from embryonic development to cell differentiation and growth. It is currently emerging as crucial mechanism involved in modulation of host-parasite interactions and pathogenesis, promoting discovery of targets for drug treatment. In bivalves, little is known about epigenetic mechanism in host parasite interactions. The objective of the present study was to evaluate the effect of Perkinsus sp. infections on DNA methylation levels in tissues of Crassostrea gasar oysters. Samples were collected in 2015 and 2016 in the Mamanguape River estuary (PB). Oyster gills were removed and used for Perkinsus sp. DIAGNOSIS Gills (G) and gastrointestinal tract (GT), as well as cultured P. marinus trophozoites were preserved in 95% ethanol for DNA extractions. DNA methylation levels were estimated from G and GT tissues of uninfected (n=60) and infected oysters (n=60), and from P. marinus trophozoites, by ELISA assays. Results showed that the mean prevalence of Perkinsus sp. infections was high (87.3%) in 2015 and moderate (59.6%) in 2016. DNA methylation levels of G and GT tissues were significantly lower in infected oyster than in uninfected oysters, suggesting that infections are associated with hypomethylation. Methylation level was significantly higher in G than in GT tissues, indicating a likely tissue-specific mechanism. P. marinus trophozoites showed 33% methylation. This was the first study that confirms alterations of DNA methylation in two tissues of C. gasar oysters in association with Perkinsus sp. infections.
Collapse
Affiliation(s)
- Natanael Dantas Farias
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Universidade Federal da Paraíba, CEP 58051-900, João Pessoa, PB, Brazil.
| | - Naila Francis Paulo de Oliveira
- Laboratório de Genética Molecular Humana, Departamento de Biologia Molecular, Universidade Federal da Paraíba, CEP 58051-900, João Pessoa, PB, Brazil.
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Universidade Federal da Paraíba, CEP 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
9
|
Queiroga FR, Marques-Santos LF, Hégaret H, Sassi R, Farias ND, Santana LN, da Silva PM. Effects of cyanobacteria Synechocystis spp. in the host-parasite model Crassostrea gasar-Perkinsus marinus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:100-107. [PMID: 28407513 DOI: 10.1016/j.aquatox.2017.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Perkinsosis is a disease caused by protozoan parasites from the Perkinsus genus. In Brazil, two species, P. beihaiensis and P. marinus, are frequently found infecting native oysters (Crassostrea gasar and C. rhizophorae) from cultured and wild populations in several states of the Northeast region. The impacts of this disease in bivalves from Brazil, as well as the interactions with environmental factors, are poorly studied. In the present work, we evaluated the in vitro effects of the cyanobacteria Synechocystis spp. on trophozoites of P. marinus and haemocytes of C. gasar. Four cyanobacteria strains isolated from the Northeast Brazilian coast were used as whole cultures (WCs) and extracellular products (ECPs). Trophozoites of P. marinus were exposed for short (4h) and long (48h and 7days, the latter only for ECPs) periods, while haemocytes were exposed for a short period (4h). Cellular and immune parameters, i.e. cell viability, cell count, reactive oxygen species production (ROS) and phagocytosis of inert (latex beads) and biological particles (zymosan and trophozoites of P. marinus) were measured by flow cytometry. The viability of P. marinus trophozoites was improved in response to WCs of Synechocystis spp., which could be a beneficial effect of the cyanobacteria providing nutrients and reducing reactive oxygen species. Long-term exposure of trophozoites to ECPs of cyanobacteria did not modify in vitro cell proliferation nor viability. In contrast, C. gasar haemocytes showed a reduction in cell viability when exposed to WCs, but not to ECPs. However, ROS production was not altered. Haemocyte ability to engulf latex particles was reduced when exposed mainly to ECPs of cyanobacteria; while neither the WCs nor the ECPs modified phagocytosis of the biological particles, zymosan and P. marinus. Our results suggest a negative effect of cyanobacteria from the Synechocystis genus on host immune cells, in contrast to a more beneficial effect on the parasite cell, which could together disrupt the balance of the host-parasite interaction and make oysters more susceptible to P. marinus as well as opportunistic infections.
Collapse
Affiliation(s)
- Fernando Ramos Queiroga
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Luis Fernando Marques-Santos
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Roberto Sassi
- Laboratório de Ambientes Recifais e Biotecnologia de Microalgas (LARBIM), Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Natanael Dantas Farias
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Lucas Nunes Santana
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
10
|
Yu L, Cao B, Long Y, Tukayo M, Feng C, Fang W, Luo D. Comparative transcriptomic analysis of two important life stages of Angiostrongylus cantonensis: fifth-stage larvae and female adults. Genet Mol Biol 2017. [PMID: 28644509 PMCID: PMC5488468 DOI: 10.1590/1678-4685-gmb-2016-0274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanisms involved in the fast growth of Angiostrongylus
cantonensis from fifth-stage larvae (L5) to female adults and how L5
breaks through the blood-brain barrier in a permissive host remain unclear. In this
work, we compared the transcriptomes of these two life stages to identify the main
factors involved in the rapid growth and transition to adulthood. RNA samples from
the two stages were sequenced and assembled de novo. Gene Ontology
and Kyoto Encyclopedia of Genes and Genomes pathway analyses of 1,346 differentially
expressed genes between L5 and female adults was then undertaken. Based on a
combination of analytical results and developmental characteristics, we suggest that
A. cantonensis synthesizes a large amount of cuticle in L5 to
allow body dilatation in the rapid growth period. Products that are degraded via the
lysosomal pathway may provide sufficient raw materials for cuticle production. In
addition, metallopeptidases may play a key role in parasite penetration of the
blood-brain barrier during migration from the brain. Overall, these results indicate
that the profiles of each transcriptome are tailored to the need for survival in each
developmental stage.
Collapse
Affiliation(s)
- Liang Yu
- Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Binbin Cao
- Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Long
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan, 410006, China
| | - Meks Tukayo
- Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chonglv Feng
- Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenzhen Fang
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Damin Luo
- Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
11
|
Robledo D, Hermida M, Rubiolo JA, Fernández C, Blanco A, Bouza C, Martínez P. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:41-55. [PMID: 28063346 DOI: 10.1016/j.cbd.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Flatfish have a high market acceptance thus representing a profitable aquaculture production. The main farmed species is the turbot (Scophthalmus maximus) followed by Japanese flounder (Paralichthys olivaceous) and tongue sole (Cynoglossus semilaevis), but other species like Atlantic halibut (Hippoglossus hippoglossus), Senegalese sole (Solea senegalensis) and common sole (Solea solea) also register an important production and are very promising for farming. Important genomic resources are available for most of these species including whole genome sequencing projects, genetic maps and transcriptomes. In this work, we integrate all available genomic information of these species within a common framework, taking as reference the whole assembled genomes of turbot and tongue sole (>210× coverage). New insights related to the genetic basis of productive traits and new data useful to understand the evolutionary origin and diversification of this group were obtained. Despite a general 1:1 chromosome syntenic relationship between species, the comparison of turbot and tongue sole genomes showed huge intrachromosomic reorganizations. The integration of available mapping information supported specific chromosome fusions along flatfish evolution and facilitated the comparison between species of previously reported genetic associations for productive traits. When comparing transcriptomic resources of the six species, a common set of ~2500 othologues and ~150 common miRNAs were identified, and specific sets of putative missing genes were detected in flatfish transcriptomes, likely reflecting their evolutionary diversification.
Collapse
Affiliation(s)
- Diego Robledo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Biology (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|