1
|
Li YN, Zhang X, Huang BW, Xin LS, Wang CM, Bai CM. Localization and Tissue Tropism of Ostreid Herpesvirus 1 in Blood Clam Anadara broughtonii. BIOLOGY 2024; 13:720. [PMID: 39336147 PMCID: PMC11429395 DOI: 10.3390/biology13090720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
OsHV-1 caused detrimental infections in a variety of bivalve species of major importance to aquaculture worldwide. Since 2012, there has been a notable increase in the frequency of mass mortality events of the blood clam associated with OsHV-1 infection. The pathological characteristics, tissue and cellular tropisms of OsHV-1 in A. broughtonii remain unknown. In this study, we sought to investigate the distribution of OsHV-1 in five different organs (mantle, hepatopancreas, gill, foot, and adductor muscle) of A. broughtonii by quantitative PCR, histopathology and in situ hybridization (ISH), to obtain insight into the progression of the viral infection. Our results indicated a continuous increase in viral loads with the progression of OsHV-1 infection, reaching a peak at 48 h or 72 h post-infection according to different tissues. Tissue damage and necrosis, as well as colocalized OsHV-1 ISH signals, were observed primarily in the connective tissues of various organs and gills. Additionally, minor tissue damage accompanied by relatively weak ISH signals was detected in the foot and adductor muscle, which were filled with muscle tissue. The predominant cell types labeled by ISH signals were infiltrated hemocytes, fibroblastic-like cells, and flat cells in the gill filaments. These results collectively illustrated the progressive alterations in pathological confusion and OsHV-1 distribution in A. broughtonii, which represent most of the possible responses of cells and tissues to the virus.
Collapse
Affiliation(s)
- Ya-Nan Li
- College of Ocean and Biology Engineering, Yancheng Teachers University, Yancheng 224007, China;
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
| | - Xiang Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
| | - Bo-Wen Huang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
| | - Lu-Sheng Xin
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
| | - Chong-Ming Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
2
|
Huang B, Zhang X, Wang C, Bai C, Li C, Li C, Xin L. Isolation and Characterization of Vibrio kanaloae as a Major Pathogen Associated with Mass Mortalities of Ark Clam, Scapharca broughtonii, in Cold Season. Microorganisms 2021; 9:2161. [PMID: 34683482 PMCID: PMC8541523 DOI: 10.3390/microorganisms9102161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
High temperature is a risk factor for vibriosis outbreaks. Most vibrios are opportunistic pathogens that cause the mortality of aquatic animals at the vibrio optimal growth temperature (~25 °C), whereas a dominant Vibrio kanaloae strain SbA1-1 is isolated from natural diseased ark clams (Scapharca broughtonii) during cold seasons in this study. Consistent symptoms and histopathological features reappeared under an immersion infection with SbA1-1 performed at 15 °C. The pathogenicity difference of SbA1-1 was assessed under different temperatures (15 °C and 25 °C). The cumulative mortality rates of ark clams were significantly higher at the low temperature (15 °C) than at the high temperature (25 °C); up to 98% on 16th day post SbA1-1 infection. While the growth ratio of SbA1-1 was retarded at the low temperature, the hemolytic activity and siderophores productivity of SbA1-1 were increased. This study constitutes the first isolation of V. kanaloae from the natural diseased ark clams (S. broughtonii) in cold seasons and the exposition of the dissimilar pathogenicity of SbA1-1 at a different temperature. All the above indicates that V. kanaloae constitutes a threat to ark clam culture, especially in cold seasons.
Collapse
Affiliation(s)
- Bowen Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Xiang Zhang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chongming Wang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Changming Bai
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chen Li
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Lusheng Xin
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| |
Collapse
|
3
|
Morga B, Jacquot M, Pelletier C, Chevignon G, Dégremont L, Biétry A, Pepin JF, Heurtebise S, Escoubas JM, Bean TP, Rosani U, Bai CM, Renault T, Lamy JB. Genomic Diversity of the Ostreid Herpesvirus Type 1 Across Time and Location and Among Host Species. Front Microbiol 2021; 12:711377. [PMID: 34326830 PMCID: PMC8313985 DOI: 10.3389/fmicb.2021.711377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. This is particularly true for pathogens with low per-site mutation rates, such as DNA viruses, that do not exhibit a large amount of evolutionary change among genetic sequences sampled at different time points. However, whole-genome sequencing can reveal the accumulation of novel genetic variation between samples, promising to render most, if not all, microbial pathogens measurably evolving and suitable for analytical techniques derived from population genetic theory. Here, we aim to assess the measurability of evolution on epidemiological time scales of the Ostreid herpesvirus 1 (OsHV-1), a double stranded DNA virus of which a new variant, OsHV-1 μVar, emerged in France in 2008, spreading across Europe and causing dramatic economic and ecological damage. We performed phylogenetic analyses of heterochronous (n = 21) OsHV-1 genomes sampled worldwide. Results show sufficient temporal signal in the viral sequences to proceed with phylogenetic molecular clock analyses and they indicate that the genetic diversity seen in these OsHV-1 isolates has arisen within the past three decades. OsHV-1 samples from France and New Zealand did not cluster together suggesting a spatial structuration of the viral populations. The genome-wide study of simple and complex polymorphisms shows that specific genomic regions are deleted in several isolates or accumulate a high number of substitutions. These contrasting and non-random patterns of polymorphism suggest that some genomic regions are affected by strong selective pressures. Interestingly, we also found variant genotypes within all infected individuals. Altogether, these results provide baseline evidence that whole genome sequencing could be used to study population dynamic processes of OsHV-1, and more broadly herpesviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean-François Pepin
- Ifremer, ODE-Littoral-Laboratoire Environnement Ressources des Pertuis Charentais (LER-PC), La Tremblade, France
| | | | - Jean-Michel Escoubas
- IHPE, CNRS, Ifremer, Université de Montpellier - Université de Perpignan Via Domitia, Montpellier, France
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom.,Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - Umberto Rosani
- Department of Biology, University of Padua, Padua, Italy
| | - Chang-Ming Bai
- Yellow Sea Fisheries Research Institute, CAFS, Qingdao, China
| | | | | |
Collapse
|
4
|
Immune Control of Herpesvirus Infection in Molluscs. Pathogens 2020; 9:pathogens9080618. [PMID: 32751093 PMCID: PMC7460283 DOI: 10.3390/pathogens9080618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Molluscan herpesviruses that are capable of infecting economically important species of abalone and oysters have caused significant losses in production due to the high mortality rate of infected animals. Current methods in preventing and controlling herpesviruses in the aquacultural industry are based around biosecurity measures which are impractical and do not contain the virus as farms source their water from oceans. Due to the lack of an adaptive immune system in molluscs, vaccine related therapies are not a viable option; therefore, a novel preventative strategy known as immune priming was recently explored. Immune priming has been shown to provide direct protection in oysters from Ostreid herpesvirus-1, as well as to their progeny through trans-generational immune priming. The mechanisms of these processes are not completely understood, however advancements in the characterisation of the oyster immune response has assisted in formulating potential hypotheses. Limited literature has explored the immune response of abalone infected with Haliotid herpesvirus as well as the potential for immune priming in these species, therefore, more research is required in this area to determine whether this is a practical solution for control of molluscan herpesviruses in an aquaculture setting.
Collapse
|
5
|
Martenot C, Faury N, Morga B, Degremont L, Lamy JB, Houssin M, Renault T. Exploring First Interactions Between Ostreid Herpesvirus 1 (OsHV-1) and Its Host, Crassostrea gigas: Effects of Specific Antiviral Antibodies and Dextran Sulfate. Front Microbiol 2019; 10:1128. [PMID: 31178841 PMCID: PMC6543491 DOI: 10.3389/fmicb.2019.01128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Viral entry mechanisms of herpesviruses constitute a highly complex process which implicates several viral glycoproteins and different receptors on the host cell surfaces. This initial infection stage was currently undescribed for Ostreid herpes virus 1 (OsHV-1), a herpesvirus infecting bivalves including the Pacific oyster, Crassostrea gigas. To identify OsHV-1 glyproteins implicated in the attachment of the virus to oyster cells, three viral putative membrane proteins, encoded by ORF 25, 41, and 72, were selected and polyclonal antibodies against these targets were used to explore first interactions between the virus and host cells. In addition, effects of dextran sulfate, a negative charged sulfated polysaccharide, were investigated on OsHV-1 infection. Effects of antiviral antibodies and dextran sulfate were evaluated by combining viral DNA and RNA detection in spat (in vivo trials) and in oyster hemolymph (in vitro trials). Results showed that viral protein encoded by ORF 25 appeared to be involved in interaction between OsHV-1 and host cells even if other proteins are likely implicated, such as proteins encoded by ORF 72 and ORF 41. Dextran sulfate at 30 μg/mL significantly reduced the spat mortality rate in the experimental conditions. Taken together, these results contribute to better understanding the pathogenesis of the viral infection, especially during the first stage of OsHV-1 infection, and open the way toward new approaches to control OsHV-1 infection in confined facilities.
Collapse
Affiliation(s)
- Claire Martenot
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Nicole Faury
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Benjamin Morga
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Lionel Degremont
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Jean-Baptiste Lamy
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | | | - Tristan Renault
- Département Ressources Biologiques et Environnement, Institut Français de Recherche pour l'Exploitation de la Mer, Nantes, France
| |
Collapse
|
6
|
Bai CM, Li YN, Chang PH, Jiang JZ, Xin LS, Li C, Wang JY, Wang CM. Susceptibility of two abalone species, Haliotis diversicolor supertexta and Haliotis discus hannai, to Haliotid herpesvirus 1 infection. J Invertebr Pathol 2018; 160:26-32. [PMID: 30513284 DOI: 10.1016/j.jip.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/19/2023]
Abstract
Abalone viral ganglioneuritis (AVG), caused by Haliotid herpesvirus-1 (HaHV-1) infection, has been reported as the main cause of mortality and heavy losses of wild and cultivated abalone in Taiwan and Australia since 2003. HaHV-1 DNA has also been reported in diseased abalone collected in early 2000s in China. However, no data is available about the susceptibility, disease process and pathological changes of HaHV-1 infection in the primary cultivated abalone species in China. In the present study, two cultivated abalone species, Haliotis diversicolor supertexta and Haliotis discus hannai, were challenged with HaHV-1-CN2003 collected in 2003 in China using three different methods. Results showed that H. diversicolor supertexta was highly susceptible to HaHV-1-CN2003 infection and suffered acute mortality using all three challenge methods. H. discus hannai was not susceptible to the viral infection. Histopathology combined with transmission electron microscopy and quantitative PCR analysis revealed that the tropism of HaHV-1-CN2003 includes both neural tissue and haemocytes.
Collapse
Affiliation(s)
- Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ya-Nan Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries, Tianjin Agriculture University, Tianjin 300380, China
| | - Pen-Heng Chang
- Institute of Comparative and Molecular Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Zhe Jiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lu-Sheng Xin
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chen Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiang-Yong Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Chong-Ming Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
7
|
Bai CM, Rosani U, Xin LS, Li GY, Li C, Wang QC, Wang CM. Dual transcriptomic analysis of Ostreid herpesvirus 1 infected Scapharca broughtonii with an emphasis on viral anti-apoptosis activities and host oxidative bursts. FISH & SHELLFISH IMMUNOLOGY 2018; 82:554-564. [PMID: 30165154 DOI: 10.1016/j.fsi.2018.08.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/19/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
The ark shell, Scapharca (Anadara) broughtonii, is an economically important marine shellfish species in Northwestern Pacific. Mass mortalities of ark shell adults related to Ostreid herpesvirus-1 (OsHV-1) infection have occurred frequently since 2012. However, due to the lack of transcriptomic resource of ark shells, the molecular mechanisms underpinning the virus-host interaction remains largely undetermined. In the present study, we resolved the dual transcriptome changes of OsHV-1 infected ark shell with Illumina sequencing. A total of 44 M sequence reads were generated, of which 67,119 reads were mapped to the OsHV-1 genome. De novo assembly of host reads resulted in 276,997 unigenes. 74,529 (26.90%), 47,653 (17.20%) and 19, 611 (7.07%) unigenes were annotated into GO, KOG and KEGG database, respectively. According to RSEM expression values, we identified 2998 differentially expressed genes (DEGs) between control and challenged groups, which included 2065 up-regulated unigenes and 933 down-regulated unigenes. Further analysis of functional pathways indicated that OsHV-1 could inhibit host cell apoptosis mainly by the up-regulation of inhibitor of apoptosis protein (IAP), and thus facilitating its successful replication. While host hemoglobins could induce oxidative burst by suppressing its peroxidase activity, and thus defense against OsHV-1 infection. Although we reported a narrow expression of the OsHV-1 genome compared to Crassostrea gigas infection, we highlighted several common viral genes highly expressed in the two hosts, suggesting an important functional role. This study offers insights into the pathogenesis mechanisms of OsHV-1 infection in bivalve mollusks of the Arcidae family.
Collapse
Affiliation(s)
- Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Umberto Rosani
- Department of Biology, University of Padua, Padua, 35121, Italy
| | - Lu-Sheng Xin
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Gui-Yang Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chen Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Qing-Chen Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chong-Ming Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
8
|
Ostreid Herpesvirus-1 Infects Specific Hemocytes in Ark Clam, Scapharca broughtonii. Viruses 2018; 10:v10100529. [PMID: 30274142 PMCID: PMC6213218 DOI: 10.3390/v10100529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022] Open
Abstract
High levels of ostreid herpesvirus 1 (OsHV-1) were detected in hemocytes of OsHV-1 infected mollusks. Mollusk hemocytes are comprised of different cell types with morphological and functional heterogeneity. Granular cells are considered the main immunocompetent hemocytes. This study aimed to ascertain if OsHV-1 infects specific types of hemocytes in ark clams. Types of hemocytes were first characterized through microexamination and flow cytometry. In addition to a large group of red cells, there were three types of recognizable granular cells in ark clams. Type II granular cells were mostly found with OsHV-1 infection by transmission electron microscope (TEM) examination, and represented the hemocyte type that was susceptible to OsHV-1 infection. The subcellular location of OsHV-1 particles in apoptotic type II granular cells was further analyzed. Some OsHV-1 particles were free inside the apoptotic cells, which may contribute to OsHV-1 transmission among cells in the host, some particles were also found enclosed inside apoptotic bodies. Apoptosis is an important part of the host defense system, but might also be hijacked by OsHV-1 as a strategy to escape host immune attack. Following this investigation, a primary culture of type II granular cells with OsHV-1 infection would facilitate the research on the interaction between OsHV-1 and mollusk hosts.
Collapse
|
9
|
Real-time quantitative isothermal detection of Ostreid herpesvirus-1 DNA in Scapharca subcrenata using recombinase polymerase amplification. J Virol Methods 2018; 255:71-75. [PMID: 29428398 DOI: 10.1016/j.jviromet.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Ostreid herpesvirus-1 (OsHV-1) is a well-known pathogen associated with high mortality rates in hatchery-reared larvae and juveniles of different bivalve species worldwide. Early, rapid and accurate diagnosis plays a fundamental role in disease prevention and control in aquaculture. Recombinase polymerase amplification (RPA) is a novel isothermal amplification method, which can amplify detectable amount of DNA at 37 °C-39 °C within 20 min. In the present study, two sets of specific primers and probes were designed for the real-time quantitative RPA (qRPA) detection of OsHV-1 DNA. The sensitivity and specificity of detection were evaluated by comparison with quantitative polymerase chain reaction (qPCR). The detection limit for qRPA assays was shown to be 5 copies DNA/reaction for the primer set ORF95, which was lower than the 100 copies required for the qPCR test. The optimal reaction temperature and time were 37 °C for 20 min, making this approach faster than qPCR. This is the first study to apply qPCR and qRPA methods to detect OsHV-1 in Scapharca subcrenata. The percentage of viral load sample detected by the two methods was 22% and the correlation of the two virus quantitative results was 0.8. Therefore, qRPA assays is sensitive, fast, and high-temperature independent relative to qPCR and is suitable for critical clinical diagnostics use and rapid field analysis in resource-limited settings.
Collapse
|