1
|
Ran M, Yang W, Faryad Khan MU, Li T, Pan G. Microsporidia secretory effectors and their roles in pathogenesis. J Eukaryot Microbiol 2024; 71:e13046. [PMID: 39228342 DOI: 10.1111/jeu.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024]
Abstract
Microsporidia, a group of unicellular eukaryotic parasites, rely intensely on secretory effectors for successful invasion and proliferation within host cells. This review focuses on the identification, characterization, and functional roles of effectors, including secretory proteins and microRNAs. The adhesion proteins like the Ricin-B-lectin facilitate initial invasion, which binds to the host cell surface. Once inside, microsporidia deploy a range of effectors to modulate host immune responses, such as serpin proteins, and redirect host cell metabolism to meet the parasite's nutritional needs through hexokinase. Some effectors such as microRNAs, alter the host gene expression to create a more favorable intracellular parasitic environment. In conclusion, the secretory effectors of microsporidia play a pivotal role spanning from host cell invasion to intracellular establishment. In the future, more effectors secreted by microsporidia will be studied, which will not only help to elucidate the molecular mechanism of pathogenic manipulation of the host but also help to provide the potential targets for anti-parasitic treatments.
Collapse
Affiliation(s)
- Maoshuang Ran
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Wenxin Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Muhammad Usman Faryad Khan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Zhang L, Zhang S, Qiao Y, Cao X, Jiang G, Cheng J, Wan X, Meng Q, Shen H. A comparative transcriptome analysis of how shrimp endure and adapt to long-term symbiosis with Enterocytozoon hepatopenaei infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109088. [PMID: 37778737 DOI: 10.1016/j.fsi.2023.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) is a prevalent microsporidian pathogen responsible for hepatopancreatic microsporidiosis (HPM) in Litopenaeus vannamei. This infection not only leads to slowed growth in shrimp abut aslo inflicts substantial economic losses in the global aquaculture industry. However, the molecular mechanisms by which EHP influences the host during various infection stages remain unclear. This study employed comparative transcriptomics to examine the effects of EHP infection on Litopenaeus vannamei between early and late stage of infection groups. Utilizing transcriptomic approaches, we identified differentially expressed genes (DEGs) with notable biological significance through the COG, GO, KEGG, GSEA, and Mufzz time-series methodologies. The results reveal that EHP infection considerably influences host gene expression, with marked differences between early and late infection across distinct timeframes. Key processes such as detoxification, cell apoptosis, and lipid metabolism are pivotal during host-parasite interactions. Hexokinase and phosphatidic acid phosphatase emerge as key factors enabling invasion and sustained effects. Cytochrome P450 and glucose-6-phosphate dehydrogenase could facilitate infection progression. EHP significantly impacts growth, especially through ecdysteroids and 17β-estradiol dehydrogenase. By delineating stage-specific effects, we gain insights into interaction between EHP and Litopenaeus vannamei, showing how intracellular pathogens reprogram host defenses into mechanisms enabling long-term persistence. This study provides a deeper understanding of host-pathogen dynamics, emphasizing the interplay between detoxification, metabolism, immunity, apoptosis and growth regulation over the course of long-term symbiosis.
Collapse
Affiliation(s)
- Leiting Zhang
- Nanjing Normal University, Nanjing, 210023, China; Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Sheng Zhang
- Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Yi Qiao
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Xiaowei Cao
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Ge Jiang
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Jie Cheng
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Xihe Wan
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Qingguo Meng
- Nanjing Normal University, Nanjing, 210023, China
| | - Hui Shen
- Nanjing Normal University, Nanjing, 210023, China; Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China.
| |
Collapse
|
3
|
Heterologous expression of scFv fragment against Vairimorpha (Nosema) ceranae hexokinase in Sf9 cell culture inhibits microsporidia intracellular growth. J Invertebr Pathol 2022; 191:107755. [DOI: 10.1016/j.jip.2022.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022]
|
4
|
Luo J, He Q, Xu JZ, Xu C, Han YZ, Gao HL, Meng XZ, Pan GQ, Li T, Zhou ZY. Microsporidia infection upregulates host energy metabolism but maintains ATP homeostasis. J Invertebr Pathol 2021; 186:107596. [PMID: 33910037 DOI: 10.1016/j.jip.2021.107596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022]
Abstract
Microsporidia are a group of obligate intracellular parasites which lack mitochondria and have highly reduced genomes. Therefore, they are unable to produce ATP via the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Instead, they have evolved strategies to obtain and manipulate host metabolism to acquire nutrients. However, little is known about how microsporidia modulate host energy metabolisms. Here, we present the first targeted metabolomics study to investigate changes in host energy metabolism as a result of infection by a microsporidian. Metabolites of silkworm embryo cell (BmE) were measured 48 h post infection by Nosema bombycis. Thirty metabolites were detected, nine of which were upregulated and mainly involved in glycolysis (glucose 6-phosphate, fructose 1,6-bisphosphate) and the TCA cycle (succinate, α-ketoglutarate, cis-aconitate, isocitrate, citrate, fumarate). Pathway enrichment analysis suggested that the upregulated metabolites could promote the synthesization of nucleotides, fatty acids, and amino acids by the host. ATP concentration in host cells, however, was not significantly changed by the infection. This ATP homeostasis was also found in Encephalitozoon hellem infected mouse macrophage RAW264.7, human monocytic leukemia THP-1, human embryonic kidney 293, and human foreskin fibroblast cells. These findings suggest that microsporidia have evolved strategies to maintain levels of ATP in the host while stimulating metabolic pathways to provide additional nutrients for the parasite.
Collapse
Affiliation(s)
- Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jin-Zhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Chen Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yin-Ze Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Hai-Long Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Xian-Zhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guo-Qing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Ze-Yang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; College of Life Science, Chongqing Normal University, Chongqing 400047, China.
| |
Collapse
|
5
|
Shakeel M, Du J, Li SW, Zhou YJ, Sarwar N, Bukhari SAH. Characterization, Knockdown and Parental Effect of Hexokinase Gene of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) Revealed by RNA Interference. Genes (Basel) 2020; 11:genes11111258. [PMID: 33114530 PMCID: PMC7693289 DOI: 10.3390/genes11111258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Hexokinase (HK) is a key enzyme in chitin biosynthesis in insects and plays an important role in development and energy regulation. It also performs a crucial role in the synthesis of Glucose-6-phosphate and its putative functions are studied via injection of dsRNA corresponding to the hexokinase gene from Cnaphalocrocis medinalis (CmHK). This study was designed to analyze the characteristics and expression patterns of HK-related genes in various tissues of C. medinalis at different developmental stages. The CmHK ORF is a 1359 bp in length, encoding a protein of 452 amino acids, with homology and cluster analysis showing that CmHK shares an 85.11% sequence similarity with hexokinase from Ostrinia furnacalis.CmHK was highly expressed in the ovary and in the fifth instar larvae. Injection of dsCmHK significantly suppressed mRNA expression (73.6%) 120 h post-dsRNA injection as compared to a control group. The results demonstrated an increased incidence of larval and pupal mortality of 80% and 78%, respectively, with significant variation in the sex ratio between males (68.33%) and females (35%), overt larval deformities, and a reduction in average weight gain observed 120 h post-dsRNA injection. In addition, dsCmHK-injected C. medinalis showed a significant reduction in ovulation per female and larval hatching rate, along with increased larval and pupal mortality and variation in male and female emergence over three generations (G1, G2, and G3). Taken together, the outcomes of the study provide a foundation to study gene function and a new dimension to control C. medinalis by transgenic RNAi technology.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
| | - Juan Du
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
| | - Shang-Wei Li
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
- Correspondence: ; Tel.: +86-137-6506-6957
| | - Yuan-Jin Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; (M.S.); (J.D.); (Y.-J.Z.)
| | - Naeem Sarwar
- Department of Agronomy, Bahauddin Zakariya University, Multan 60800, Pakistan; (N.S.); (S.A.H.B.)
| | | |
Collapse
|
6
|
Tamim El Jarkass H, Reinke AW. The ins and outs of host-microsporidia interactions during invasion, proliferation and exit. Cell Microbiol 2020; 22:e13247. [PMID: 32748538 DOI: 10.1111/cmi.13247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Microsporidia are a large group of fungal-related obligate intracellular parasites. They are responsible for infections in humans as well as in agriculturally and environmentally important animals. Although microsporidia are abundant in nature, many of the molecular mechanisms employed during infection have remained enigmatic. In this review, we highlight recent work showing how microsporidia invade, proliferate and exit from host cells. During invasion, microsporidia use spore wall and polar tube proteins to interact with host receptors and adhere to the host cell surface. In turn, the host has multiple defence mechanisms to prevent and eliminate these infections. Microsporidia encode numerous transporters and steal host nutrients to facilitate proliferation within host cells. They also encode many secreted proteins which may modulate host metabolism and inhibit host cell defence mechanisms. Spores exit the host in a non-lytic manner that is dependent on host actin and endocytic recycling proteins. Together, this work provides a fuller picture of the mechanisms that these fascinating organisms use to infect their hosts.
Collapse
Affiliation(s)
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Pan BY, Li GY, Wu Y, Zhou ZS, Zhou M, Li C. Glucose Utilization in the Regulation of Chitin Synthesis in Brown Planthopper. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5574393. [PMID: 31557289 PMCID: PMC6761884 DOI: 10.1093/jisesa/iez081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Glucose-6-phosphatase (G6Pase) and hexokinase (HK) are two key enzymes in the glycolysis and gluconeogenesis pathways, which catalyze the synthesis and degradation of glucose in insects, respectively. G6Pase and HK play an important role in insect growth by regulating the metabolism of glucose, leading to the efficient metabolism of other macromolecules. However, it is unclear whether these genes could be investigated for pest control through their actions on chitin metabolism. We studied the potential functions of G6Pase and HK genes in the regulation of chitin metabolism pathways by RNAi technology. Interference with G6Pase expression did not affect trehalose and chitin metabolism pathways in brown planthopper, Nilaparvata lugens (Stål). However, knockdown of the HK gene resulted in a significant decrease of expression of genes associated with the trehalose metabolic pathway but had no significant effect on trehalase activity, trehalose content, or glucogen content. Additionally, HK knockdown resulting in downregulation of the genes involved in chitin metabolism in the brown planthopper. These insects also showed wing deformities and difficulty in molting to varying degrees. We suggest that the silencing of HK expression directly inhibited the decomposition of glucose, leading to impaired chitin synthesis.
Collapse
Affiliation(s)
- Bi-Ying Pan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, P.R. China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, P.R. China
| | - Guo-Yong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, P.R. China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, P.R. China
| | - Zhong-Shi Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, P.R. China
| | - Min Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, P.R. China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, P.R. China
| |
Collapse
|
8
|
Abstract
AbstractHexokinase (HK) is a core glycolytic enzyme of Microsporidia which regulates host cell metabolic processes. The goal of the present study was to test for the utility of HK for molecular phylogenetics, species identification and molecular detection of microsporidia in infected insects. HK sequence-based reconstructions were essentially similar to those based upon largest subunit RNA polymerase (RPB1) gene sequences, as well as previously published rRNA gene and genome-based trees. Comparing HK sequences allowed clear differentiation of closely related taxa, such as Nosema bombycis and Nosema pyrausta. In Nosema ceranae, unique SNPs were found for an isolate from wild colonies of the Burzyan dark honey bee as compared with the isolates from domesticated European honey bee. Similarly, in Encephalitozoon cuniculi, HK was as effective as RPB1 for discrimination of isolates belonging to different ITS genotypes. Amplification using species-specific primers flanking short fragments at the 3′-end of HK gene showed the presence of infection in insect tissues infected with N. pyrausta, Nosema ceranae and Paranosema (Antonospora) locustae. For the latter parasite species, HK expression was also demonstrated at early stages of infection using total mRNA extracts of locust larvae. These results indicate the suitability of HK as a novel tool for molecular genetic studies of Microsporidia.
Collapse
|
9
|
Huang Y, Zheng S, Mei X, Yu B, Sun B, Li B, Wei J, Chen J, Li T, Pan G, Zhou Z, Li C. A secretory hexokinase plays an active role in the proliferation of Nosema bombycis. PeerJ 2018; 6:e5658. [PMID: 30258733 PMCID: PMC6152459 DOI: 10.7717/peerj.5658] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/28/2018] [Indexed: 01/12/2023] Open
Abstract
The microsporidian Nosema bombycis is an obligate intracellular parasite of Bombyx mori, that lost its intact tricarboxylic acid cycle and mitochondria during evolution but retained its intact glycolysis pathway. N. bombycis hexokinase (NbHK) is not only a rate-limiting enzyme of glycolysis but also a secretory protein. Indirect immunofluorescence assays and recombinant HK overexpressed in BmN cells showed that NbHK localized in the nucleus and cytoplasm of host cell during the meront stage. When N. bombycis matured, NbHK tended to concentrate at the nuclei of host cells. Furthermore, the transcriptional profile of NbHK implied it functioned during N. bombycis’ proliferation stages. A knock-down of NbHK effectively suppressed the proliferation of N. bombycis indicating that NbHK is an important protein for parasite to control its host.
Collapse
Affiliation(s)
- Yukang Huang
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Shiyi Zheng
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Xionge Mei
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Bin Yu
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Bin Sun
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Boning Li
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China
| | - Junhong Wei
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Jie Chen
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Tian Li
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China.,Chongqing Normal University, College of Life Sciences, Chongqing, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory Of Silkworm Genome Biology, Southwest University, Chongqing, Chongqing, China.,Southwest University, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Chongqing, Chongqing, China
| |
Collapse
|
10
|
Arthurs S, Dara SK. Microbial biopesticides for invertebrate pests and their markets in the United States. J Invertebr Pathol 2018; 165:13-21. [PMID: 29402394 DOI: 10.1016/j.jip.2018.01.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 11/17/2022]
Abstract
Microbial pesticides based on bacteria, fungi and viruses or their bioactive compounds have long been developed as alternatives for synthetic pesticides to control invertebrate pests. However, concern for environmental and human health from excessive reliance on chemical pesticides, changes in residue standards, and increased demand for organically grown produce has contributed to a considerable growth in their use in recent years. There are currently 356 registered biopesticide active ingredients in the U.S., including 57 species and/or strains of microbes or their derivatives, labelled for use against pestiferous insects, mites and nematodes. Strains of Bacillus thuringiensis for Lepidoptera remain the most popular products, but newer bacterial strains and their metabolites have been developed against a wider range of arthropods for use on fruit, vegetable and ornamental crops. Currently, ten fungal species/strains are registered against thrips, whiteflies, aphids, or other sucking pests and plant parasitic nematodes in greenhouse, nursery and field crops, while five nucleopolyhedroviruses and three granuloviruses are registered for Lepidoptera in field and greenhouse grown vegetables and ornamentals, tree fruit and nuts, forestry, and stored products. Many of these products are organic listed and most have 4 h or less reentry and no pre-harvest restrictions. Investment by multinational companies, advances in screening, industrial fermentation and storage of new microorganisms, are increasing the market share for microbials. Here, we summarize the market for microbial-based pesticides labelled for invertebrates in the U.S. We cover current uses and recent advances that further advance their use in additional markets in the coming decades.
Collapse
Affiliation(s)
- Steven Arthurs
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, United States.
| | - Surendra K Dara
- University of California Cooperative Extension, 2156 Sierra Way, Ste. C, San Luis Obispo, CA 93401, United States.
| |
Collapse
|
11
|
Chen L, Li R, You Y, Zhang K, Zhang L. A Novel Spore Wall Protein from Antonospora locustae (Microsporidia: Nosematidae) Contributes to Sporulation. J Eukaryot Microbiol 2017; 64:779-791. [PMID: 28277606 PMCID: PMC5697631 DOI: 10.1111/jeu.12410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/18/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022]
Abstract
Microsporidia are obligate intracellular parasites, existing in a wide variety of animal hosts. Here, we reported AlocSWP2, a novel protein identified from the spore wall of Antonospora locustae (formerly, Nosema locustae, and synonym, Paranosema locustae), containing four cysteines that are conserved among the homologues of several Microspodian pathogens in insects and mammals. AlocSWP2 was detected in the wall of mature spores via indirect immunofluorescence assay. In addition, immunocytochemistry localization experiments showed that the protein was observed in the wall of sporoblasts, sporonts, and meronts during sporulation within the host body, also in the wall of mature spores. AlocSWP2 was not detected in the fat body of infected locust until the 9th day after inoculating spores via RT‐PCR experiments. Furthermore, the survival percentage of infected locusts injected with dsRNA of AlocSWP2 on the 15th, 16th, and 17th days after inoculation with microsporidian were significantly higher than those of infected locusts without dsRNA treatment. Conversely, the amount of spores in locusts infected with A. locustae after treated with RNAi AlocSWP2 was significantly lower than those of infected locusts without RNAi of this gene. This novel spore wall protein from A. locustae may be involved in sporulation, thus contributing to host mortality.
Collapse
Affiliation(s)
- Longxin Chen
- Department of Entomology, China Agricultural University, Beijing, 100193, China.,Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Runting Li
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Yinwei You
- Department of Entomology, China Agricultural University, Beijing, 100193, China.,Bio-tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kun Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Long Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|