1
|
Khunrach P, Surya W, Promdonkoy B, Torres J, Boonserm P. Biophysical Analysis of Vip3Aa Toxin Mutants Before and After Activation. Int J Mol Sci 2024; 25:11970. [PMID: 39596038 PMCID: PMC11594144 DOI: 10.3390/ijms252211970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Cry toxins from Bacillus thuringiensis are effective biopesticides that kill lepidopteran pests, replacing chemical pesticides that indiscriminately attack both target and non-target organisms. However, resistance in susceptible pests is an emerging problem. B. thuringiensis also produces vegetative insecticidal protein (Vip3A), which can kill insect targets in the same group as Cry toxins but using different host receptors, making the combined application of Cry and Vip3A an exciting possibility. Vip3A toxicity requires the formation of a homotetramer. Hence, screening of Vip3A mutants for increased stability requires orthogonal biophysical assays that can test both tetrameric integrity and monomeric robustness. For this purpose, we have used herein for the first time a combination of analytical ultracentrifugation (AUC), mass photometry (MP), differential static light scattering (DSLS) and differential scanning fluorimetry (DSF) to test five mutants at domains I and II. Although all mutants appeared more stable than the wild type (WT) in DSLS, mutants that showed more dissociation into dimers in MP and AUC experiments also showed earlier thermal unfolding by DSF at domains IV-V. All of the mutants were less toxic than the WT, but toxicity was highest for domain II mutations N242C and F229Y. Activation of the protoxin was complete and resulted in a form with a lower sedimentation coefficient. Future high-resolution structural data may lead to a deeper understanding of the increased stability that will help with rational design while retaining native toxicity.
Collapse
Affiliation(s)
- Pongsatorn Khunrach
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon 73170, Nakhon Pathom, Thailand;
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Phahonyothin Road, Khlong Luang 12120, Pathum Thani, Thailand;
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon 73170, Nakhon Pathom, Thailand;
| |
Collapse
|
2
|
Chen Z, Shi Y, Wang D, Liu X, Jiao X, Gao X, Jiang K. Structural insight into Bacillus thuringiensis Sip1Ab reveals its similarity to ETX_MTX2 family beta-pore-forming toxin. PEST MANAGEMENT SCIENCE 2023; 79:4264-4273. [PMID: 37341620 DOI: 10.1002/ps.7622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Microbially derived, protein-based biopesticides are an important approach for sustainable pest management. The secreted insecticidal proteins (Sips) produced by the bacterium Bacillus thuringiensis exhibit potent insecticidal activity against coleopteran pests and are, therefore, attractive as candidate biopesticides. However, the modes-of-action of Sips are unclear as comprehensive structural information for these proteins is lacking. RESULTS Using X-ray crystallography, we elucidated the structure of monomeric Sip1Ab at 2.28 Å resolution. Structural analyses revealed that Sip1Ab has the three domains and conserved fold characteristic of other aerolysin-like beta-pore-forming toxins (β-PFTs). Based on the sequence and structural similarities between Sip1Ab and other ETX_MTX2 subfamily toxins, we suggested the mechanism of these proteins and proposed that it is common to them all. CONCLUSION The atomic-level structural data for Sip1Ab generated by the present study could facilitate future structural and mechanistic research on Sips as well as their application in sustainable insect pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yiting Shi
- Taishan College, Shandong University, Jinan, China
| | - Dongdong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoyu Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xuyao Jiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Hemthanon T, Promdonkoy B, Boonserm P. Screening and characterization of Bacillus thuringiensis isolates for high production of Vip3A and Cry proteins and high thermostability to control Spodoptera spp. J Invertebr Pathol 2023; 201:108020. [PMID: 37956858 DOI: 10.1016/j.jip.2023.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Bacillus thuringiensis (Bt) is an entomopathogenic bacterium that produces crystalline (Cry and Cyt) and soluble (vegetative insecticidal proteins or Vips) proteins during the sporulation and vegetative growth phases, respectively. Combining Cry and Vip proteins could delay insect resistance development and exhibit synergistic activity against various insect pests. This study aims to screen Bt isolates collected from Thailand for high Vip3A and Cry protein production levels and high thermostability to control Spodoptera spp. Among the selected Bt isolates with high target protein synthesis, Bt isolate 506 was found to be safe for further biopesticide formulation due to the absence of non-specific metabolite, as determined by the detection of thermo-stable β-exotoxin I based on biological assays and PCR analysis. Bt isolate 506 showed the presence of Cry1A, Cry2A, and Vip3A-type proteins identified as Cry1Aa45, Cry2Aa22, and Vip3A87, respectively. The insecticidal activity of whole culture extracts containing Vip3A and Cry mixtures and culture supernatants containing secreted Vip3A protein was evaluated against the second-instar larvae of S. exigua and S. frugiperda. The Bt isolate 506 showed high toxicity against both insects, and the insecticidal proteins produced by this isolate retained their activity after heating at 50 °C. This Bt isolate is a promising candidate for further development as a biopesticide against lepidopteran pests.
Collapse
Affiliation(s)
- Tharathip Hemthanon
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
4
|
An B, Zhang Y, Yan B, Cai J. RNA interference of PHB1 enhances virulence of Vip3Aa to Sf9 cells and Spodoptera frugiperda larvae. PEST MANAGEMENT SCIENCE 2023. [PMID: 36964944 DOI: 10.1002/ps.7469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In our previous work, we demonstrated that prohibitin 2 (PHB2) on the membrane of Sf9 cells was a receptor for Vip3Aa, and PHB2 in mitochondria contributed to the mitochondrial stability to reduce Vip3Aa toxicity. Prohibitin 1 (PHB1), another prohibitin family member, forms heterodimers with PHB2 to maintain the structure and stability of mitochondria. To explore whether PHB1 impacts the action process of Vip3Aa, we examined the correlation between PHB1 and Vip3Aa virulence. RESULTS We revealed that PHB1 did not colocalize with Vip3Aa in Sf9 cells. The pulldown and CoIP experiments confirmed that PHB1 interacted with neither Vip3Aa nor scavenger receptor-C (another Vip3Aa receptor). Downregulating phb1 expression in Sf9 cells did not affect the internalization of Vip3Aa but increased Vip3Aa toxicity. Further exploration revealed that the decrease of phb1 expression affected mitochondrial function, leading to increased ROS levels and mitochondrial membrane permeability and decreased mitochondrial membrane potential. The increase of mitochondrial cytochrome c release, caspase-3 activity and genomic DNA fragmentation implied that the apoptotic process was also affected. Finally, we applied RNAi to inhibit phb1 expression in Spodoptera frugiperda larvae. As a result, it significantly increased Vip3Aa virulence. CONCLUSION We found that PHB1 was not a receptor for Vip3Aa but played an essential role in mitochondria. The downregulation of phb1 expression in Sf9 cells caused instability of mitochondria, and the cells were more prone to apoptosis when challenged with Vip3Aa. The combined use of Vip3Aa and phb1 RNAi showed a synergistic effect against S. frugiperda larvae. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Colllege of Life Science, Nankai University, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
5
|
Schmaltz S, Silva MA, Ninaus RG, Guedes JVC, Zabot GL, Tres MV, Mazutti MA. Biomolecules in modern and sustainable agriculture. 3 Biotech 2023; 13:70. [PMID: 36742447 PMCID: PMC9889597 DOI: 10.1007/s13205-023-03486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
This review presents scientific findings which indicate biomolecules are excellent candidates for the development of biopesticides. Efforts are being done to find routes to increase their concentrations in the cultivation media because this concentration facilitates applications, storage, and transportation. Some of these routes are co-fermentation and ultrasound-assisted fermentation. Ultrasonication increases metabolite production and growth rates by improvement of cell permeability and nutrient uptake rates through cell membranes. For example, 24% increase in the enzymatic activity of cellulases produced by Trichoderma reesei in solid-state fermentation was achieved with ultrasonication. Also, chitinase and β-1,3-glucanase productions were stimulated by ultrasound in Beauveria bassiana cultivation, presenting positive results. The common parameters evaluated in the production of biomolecules by ultrasound-assisted fermentation are the duty cycle, time of application, power, energetic density, and how long the sonication is maintained in the fermentation media. Many successful cases are reported and discussed, which include the final formulation of bioproducts for agricultural applications. In this trend, nanotechnology is a promising tool for the development of nanoformulations. Nanoemulsification, green synthesis, biosynthesis, or biogenic synthesis are technologies used to produce such nanoformulations, allowing the controlled release of control agents, as well as the delivery of biomolecules to specific targets.
Collapse
Affiliation(s)
- Silvana Schmaltz
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900 Brazil
| | - Marco Antônio Silva
- São Carlos School of Engineering, University of São Paulo, 400, Trabalhador São-Carlense Avenue, São Carlos, SP 13566-590 Brazil
| | - Renata Gulart Ninaus
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900 Brazil
| | - Jerson Vanderlei Carus Guedes
- Department of Plant Protection, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900 Brazil
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040, Sete de Setembro St., Center DC, Cachoeira Do Sul, RS 96508-010 Brazil
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040, Sete de Setembro St., Center DC, Cachoeira Do Sul, RS 96508-010 Brazil
| | - Marcio Antonio Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900 Brazil
| |
Collapse
|
6
|
Lázaro-Berenguer M, Paredes-Martínez F, Bel Y, Núñez-Ramírez R, Arias-Palomo E, Casino P, Ferré J. Structural and functional role of Domain I for the insecticidal activity of the Vip3Aa protein from Bacillus thuringiensis. Microb Biotechnol 2022; 15:2607-2618. [PMID: 35830334 PMCID: PMC9518980 DOI: 10.1111/1751-7915.14110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Vip3 proteins are produced by Bacillus thuringiensis and are toxic against lepidopterans, reason why the vip3Aa gene has been introduced into cotton and corn to control agricultural pests. Recently, the structure of Vip3 proteins has been determined and consists of a tetramer where each monomer is composed of five structural domains. The transition from protoxin to the trypsin‐activated form involves a major conformational change of the N‐terminal Domain I, which is remodelled into a tetrameric coiled‐coil structure that is thought to insert into the apical membrane of the midgut cells. To better understand the relevance of this major change in Domain I for the insecticidal activity, we have generated several mutants aimed to alter the activity and remodelling capacity of this central region to understand its function. These mutants have been characterized by proteolytic processing, negative staining electron microscopy, and toxicity bioassays against Spodoptera exigua. The results show the crucial role of helix α1 for the insecticidal activity and in restraining the Domain I in the protoxin conformation, the importance of the remodelling of helices α2 and α3, the proteolytic processing that takes place between Domains I and II, and the role of the C‐t Domains IV and V to sustain the conformational change necessary for toxicity.
Collapse
Affiliation(s)
- Maria Lázaro-Berenguer
- Department of Genetics, Universitat de València, Burjassot, Spain.,Institut Universitari de Biotecnologia i Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain
| | - Francisco Paredes-Martínez
- Institut Universitari de Biotecnologia i Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain.,Department of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
| | - Yolanda Bel
- Department of Genetics, Universitat de València, Burjassot, Spain.,Institut Universitari de Biotecnologia i Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain
| | | | | | - Patricia Casino
- Institut Universitari de Biotecnologia i Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain.,Department of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain.,CIBER de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Juan Ferré
- Department of Genetics, Universitat de València, Burjassot, Spain.,Institut Universitari de Biotecnologia i Biomedicina BIOTECMED, Universitat de València, Burjassot, Spain
| |
Collapse
|
7
|
Critical domains in the specific binding of radiolabelled Vip3Af insecticidal protein to brush border membrane vesicles from Spodoptera spp. and cultured insect cells. Appl Environ Microbiol 2021; 87:e0178721. [PMID: 34586902 DOI: 10.1128/aem.01787-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis have been used, in combination with Cry proteins, to better control insect pests and as a strategy to delay the evolution of resistance to Cry proteins in Bt crops (crops protected from insect attack by the expression of proteins from B. thuringiensis). In this study, we have set up the conditions to analyze the specific binding of 125I-Vip3Af to Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). Heterologous competition binding experiments revealed that Vip3Aa shares the same binding sites with Vip3Af, but that Vip3Ca does not recognize all of them. As expected, Cry1Ac and Cry1F did not compete for Vip3Af binding sites. By trypsin treatment of selected alanine-mutants, we were able to generate truncated versions of Vip3Af. Their use as competitors with 125I-Vip3Af indicated that only those molecules containing domains I to III (DI-III and DI-IV) were able to compete with the trypsin-activated Vip3Af protein for binding, and that molecules only containing either domain IV or domains IV and V (DIV and DIV-V) were unable to compete with Vip3Af. These results were further confirmed with competition binding experiments using 125I-DI-III. In addition, the truncated protein 125I-DI-III also bound specifically to Sf21 cells. Cell viability assays showed that the truncated proteins DI-III and DI-IV were as toxic to Sf21 cells as the activated Vip3Af, suggesting that domains IV and V are not necessary for the toxicity to Sf21 cells, in contrast to their requirement in vivo. IMPORTANCE This study shows that Vip3Af binding sites are fully shared with Vip3Aa, only partially shared with Vip3Ca, and not shared with Cry1Ac and Cry1F in two Spodoptera spp. Truncated versions of Vip3Af revealed that only domains I to III were necessary for the specific binding, most likely because they can form the functional tetrameric oligomer and because domain III is supposed to contain the binding epitopes. In contrast to results obtained in vivo (bioassays against larvae), domains IV and V are not necessary for the ex vivo toxicity to Sf21 cells.
Collapse
|
8
|
Gupta M, Kumar H, Kaur S. Vegetative Insecticidal Protein (Vip): A Potential Contender From Bacillus thuringiensis for Efficient Management of Various Detrimental Agricultural Pests. Front Microbiol 2021; 12:659736. [PMID: 34054756 PMCID: PMC8158940 DOI: 10.3389/fmicb.2021.659736] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Bacillus thuringiensis (Bt) bacterium is found in various ecological habitats, and has natural entomo-pesticidal properties, due to the production of crystalline and soluble proteins during different growth phases. In addition to Cry and Cyt proteins, this bacterium also produces Vegetative insecticidal protein (Vip) during its vegetative growth phase, which is considered an excellent toxic candidate because of the difference in sequence homology and receptor sites from Cry proteins. Vip proteins are referred as second-generation insecticidal proteins, which can be used either alone or in complementarity with Cry proteins for the management of various detrimental pests. Among these Vip proteins, Vip1 and Vip2 act as binary toxins and have toxicity toward pests belonging to Hemiptera and Coleoptera orders, whereas the most important Vip3 proteins have insecticidal activity against Lepidopteran pests. These Vip3 proteins are similar to Cry proteins in terms of toxicity potential against susceptible insects. They are reported to be toxic toward pests, which can’t be controlled with Cry proteins. The Vip3 proteins have been successfully pyramided along with Cry proteins in transgenic rice, corn, and cotton to combat resistant pest populations. This review provides detailed information about the history and importance of Vip proteins, their types, structure, newly identified specific receptors, and action mechanism of this specific class of proteins. Various studies conducted on Vip proteins all over the world and the current status have been discussed. This review will give insights into the significance of Vip proteins as alternative promising candidate toxic proteins from Bt for the management of pests in most sustainable manner.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.,ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, India
| | - Sarvjeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
9
|
Boonyos P, Trakulnalueamsai C, Rungrod A, Chongthammakun S, Promdonkoy B. Antagonistic Effect of Truncated Fragments of Bacillus thuringiensis Vip3Aa on the Larvicidal Activity of its Full-length Protein. Protein Pept Lett 2021; 28:131-139. [PMID: 32586243 DOI: 10.2174/0929866527666200625205846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/19/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vip3Aa is a vegetative insecticidal protein produced by Bacillus thuringiensis. The protein is produced as an 88-kDa protoxin that could be processed by insect gut proteases into a 22-kDa N-terminal and a 66-kDa C-terminal fragments. The C-terminal part could bind to a specific receptor while the N-terminal part is required for toxicity and structural stability. OBJECTIVE To demonstrate the antagonistic effect of truncated fragments on the insecticidal activity of the full-length Vip3Aa. METHODS The full-length protein (Vip3Aa), a 66-kDa C-terminal fragment (Vip3Aa-D199) and a predicted carbohydrate binding module (CBM) were produced in Escherichia coli. Purified proteins were mixed at different ratios and fed to Spodoptera litura and Spodoptera exigua larvae. Mortality was recorded and compared between larvae fed with individual toxin and mixtures of the full-length and truncated toxins. RESULTS Production level of the Vip3Aa-D199 was significantly decreased comparing to that of the full-length protein. Vip3Aa-D199 and CBM fragment were not toxic to insect larvae whereas Vip3Aa showed high toxicity with LC50 about 200 ng/cm2. Feeding the larvae with mixtures of the Vip3Aa and Vip3Aa-D199 at different ratios revealed antagonistic effect of the Vip3Aa-D199 on the toxicity of Vip3Aa. Results showed that the lethal time (LT 50 and LT 95) of larvae fed the mixture toxins was longer than those fed the Vip3Aa alone. In addition, a CBM fragment could inhibit toxicity of the full-length Vip3Aa. CONCLUSION Our results demonstrated that the Vip3Aa-D199 and a CBM fragment could complete for the membrane binding thus rendering activity of the full-length Vip3Aa.
Collapse
Affiliation(s)
- Patcharaporn Boonyos
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutchanun Trakulnalueamsai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Amporn Rungrod
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Sukumal Chongthammakun
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| |
Collapse
|
10
|
Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 2021; 85:e00007-20. [PMID: 33504654 PMCID: PMC8549848 DOI: 10.1128/mmbr.00007-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.
Collapse
Affiliation(s)
- Daniel Pinos
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ascensión Andrés-Garrido
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
11
|
Zheng Z, Li R, Aweya JJ, Yao D, Wang F, Li S, Tuan TN, Zhang Y. The PirB toxin protein from Vibrio parahaemolyticus induces apoptosis in hemocytes of Penaeus vannamei. Virulence 2021; 12:481-492. [PMID: 33487106 PMCID: PMC7834086 DOI: 10.1080/21505594.2021.1872171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a major debilitating disease that causes massive shrimp death resulting in substantial economic losses in shrimp aquaculture. The Pir toxin proteins secreted by a unique strain of Vibrio parahaemolyticus play an essential role in the pathogenesis of AHPND. At present, most studies on the effects of Pir toxin proteins in shrimp focus on digestive tissues or organs such as hepatopancreas, stomach, etc., with none on the immune organs. In the present study, two recombinant Pir toxin proteins (rPirA and rPirB) of V. parahaemolyticus were expressed with rPirB shown to enter shrimp hemocytes. Employing pull-down and LC-MS/MS analysis, GST-rPirB was found to interact with 13 proteins in hemocytes, including histone H3 and histone H4 and among which histone H4 had the highest protein score. Further analysis using GST pull-down and Far-Western blot analysis revealed that rPirB could interact with histone H4. In addition, using the purified nucleosome protein from Drosophila S2 cells, it was found that PirB protein could specifically bind to histones. When flow cytometry was applied, it was observed that the interaction between PirB and histones in shrimp hemocytes induces apoptosis, which results in the dephosphorylation of Serine 10 in histone H3. Collectively, the current study shows that in addition to its effect on the digestive tract of shrimp, the PirB toxin protein interacts with histones to affect the phosphorylation of histone H3-S10, thereby inducing apoptosis.
Collapse
Affiliation(s)
- Zhou Zheng
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Ruiwei Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Tran Ngoc Tuan
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University , Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University , Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory , Guangzhou, China
| |
Collapse
|
12
|
He H, Qin X, Dong F, Ye J, Xu C, Zhang H, Liu Z, Lv X, Wu Y, Jiang X, Cheng X. Synthesis, characterization of two matrine derivatives and their cytotoxic effect on Sf9 cell of Spodoptera frugiperda. Sci Rep 2020; 10:17999. [PMID: 33093526 PMCID: PMC7581774 DOI: 10.1038/s41598-020-75053-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
The invasion of Spodoptera frugiperda has imposed a serious impact on global food security. Matrine is a botanical pesticide with a broad spectrum of insecticidal activity which was recommended for controlling Spodoptera frugiperda. In order to discover effective insecticide for Spodoptera frugiperda, two matrine derivatives modified with carbon disulfide and nitrogen-containing groups were systhesized. And their inhibition activities on Sf9 cell were evaluated. The structural configuration of compounds were characterized by IR, HPLC, MS, NMR and XRD, with yields of 52% and 65%, respectively. The IC50 of the two newly synthesized compounds on Sf9 cell reduced to 0.648 mmol/L and 1.13 mmol/L, respectively, compared with that of matrine (5.330 mmol/L). In addition, microscopic observation of Sf9 cell treated with the compounds showed that the number of adherent cells decreased, the cells shrunk, vacuolated and apoptotic bodies appeared. The two newly synthesized compounds exhibited better inhibitory effect on Sf9 cell than that of the parent matrine, suggesting that the positive effect of the introduction of 1-pyrrolidinecarbodithioate and diethylcarbamodithioate groups to matrine. The morphological observation of Sf9 cell induced by derivatives indicated that apoptosis induction may be a mechanism that inhibits insect cell proliferation and exerts insecticidal effect.
Collapse
Affiliation(s)
- Huiqing He
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Xiangjing Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, 510301, China
| | - Fangyun Dong
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jingmin Ye
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Chunbao Xu
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A5B9, Canada
| | - Hanhui Zhang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Zhanmei Liu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Xiaojing Lv
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yuehua Wu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Xuhong Jiang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| | - Xingan Cheng
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China. .,Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| |
Collapse
|
13
|
Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Toxins (Basel) 2020; 12:toxins12080522. [PMID: 32823872 PMCID: PMC7472478 DOI: 10.3390/toxins12080522] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 02/01/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram negative soil bacterium. This bacterium secretes various proteins during different growth phases with an insecticidal potential against many economically important crop pests. One of the important families of Bt proteins is vegetative insecticidal proteins (Vip), which are secreted into the growth medium during vegetative growth. There are three subfamilies of Vip proteins. Vip1 and Vip2 heterodimer toxins have an insecticidal activity against many Coleopteran and Hemipteran pests. Vip3, the most extensively studied family of Vip toxins, is effective against Lepidopteron. Vip proteins do not share homology in sequence and binding sites with Cry proteins, but share similarities at some points in their mechanism of action. Vip3 proteins are expressed as pyramids alongside Cry proteins in crops like maize and cotton, so as to control resistant pests and delay the evolution of resistance. Biotechnological- and in silico-based analyses are promising for the generation of mutant Vip proteins with an enhanced insecticidal activity and broader spectrum of target insects.
Collapse
|