1
|
Ghosh AK, Hasanuzzaman AFM, Sarower MG, Islam MR, Huq KA. Unveiling the biofloc culture potential: Harnessing immune functions for resilience of shrimp and resistance against AHPND -causing Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109710. [PMID: 38901683 DOI: 10.1016/j.fsi.2024.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
In shrimp aquaculture, disease mitigation may be accomplished by reducing the virulence of the pathogen or by boosting the shrimp's immunity. Biofloc technology is an innovative system that improves the health and resistance of shrimp to microbial infections while providing a viable option for maintaining the quality of culture water through efficient nutrient recycling. This review aimed at demonstrating the efficacy of the biofloc system in boosting the immune responses and protective processes of shrimp against Vibrio parahaemolyticus infection, which is known to cause Acute Hepatopancreatic Necrosis Disease (AHPND). Numerous studies have revealed that the biofloc system promotes the immunological capability of shrimp by raising multiple immune -related genes e.g. prophenoloxidase, serine proteinase gene, ras-related nuclear gene and penaeidinexpression and cellular and humoral responses such as hyperaemia, prophenoloxidase activity, superoxide dismutase activity, phagocytic activity; the protection and survival of shrimp when faced with a challenge from the V. parahaemolyticus strain have been enhanced. Furthermore, the use of the biofloc system improves water quality parameters and potentially bolstering their immune and overall health to effectively resist diseases; hence, promotes the growth of shrimp. The present review suggests that biofloc can serve as an effective therapy for both preventing and supporting the management of probable AHPND infection in shrimp culture. This approach exhibits potential for the progress of sustainable shrimp farming, higher productivity, and improved shrimp health.
Collapse
Affiliation(s)
- Alokesh Kumar Ghosh
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh.
| | | | - Md Golam Sarower
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Rashedul Islam
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Khandaker Anisul Huq
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
2
|
Mathan Muthu CM, Vickram AS, Bhavani Sowndharya B, Saravanan A, Kamalesh R, Dinakarkumar Y. A comprehensive review on the utilization of probiotics in aquaculture towards sustainable shrimp farming. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109459. [PMID: 38369068 DOI: 10.1016/j.fsi.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Probiotics in shrimp aquaculture have gained considerable attention as a potential solution to enhance production efficiency, disease management, and overall sustainability. Probiotics, beneficial microorganisms, have shown promising effects when administered to shrimp as dietary supplements or water additives. Their inclusion has been linked to improved gut health, nutrient absorption, and disease resistance in shrimp. Probiotics also play a crucial role in maintaining a balanced microbial community within the shrimp pond environment, enhancing water quality and reducing pathogen prevalence. This article briefly summarizes the many ways that probiotics are used in shrimp farming and the advantages that come with them. Despite the promising results, challenges such as strain selection, dosage optimization, and environmental conditions are carefully addressed for successful probiotic integration in shrimp aquaculture. The potential of probiotics as a sustainable and ecologically friendly method of promoting shrimp development and health while advancing environmentally friendly shrimp farming techniques is highlighted in this analysis. Further research is required to fully exploit probiotics' benefits and develop practical guidelines for their effective implementation in shrimp aquaculture.
Collapse
Affiliation(s)
- C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - B Bhavani Sowndharya
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Yuvaraj Dinakarkumar
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
3
|
Song Z, Li K, Li K. Acute effects of the environmental probiotics Rhodobacter sphaeroides on intestinal bacteria and transcriptome in shrimp Penaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109316. [PMID: 38142021 DOI: 10.1016/j.fsi.2023.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
In recent years, a substantial number of studies have been dedicated to exploring the potential benefits of probiotics in aquaculture. Rhodobacter sphaeroides can be used in aquaculture-related environmental bioremediation, and its protein is also used as a feed additive in Penaeus vannamei culture. To investigate the effects of releasing R. sphaeroides as environmental probiotics on P. vannamei, we employed 16S rRNA gene and mRNA transcriptome sequencing. Our study focused on assessing alterations in intestinal bacteria and intestinal gene expression in P. vannamei, establishing correlations between them. Our findings revealed a significant increase in the relative abundances of Rhodobacter, Paracoccus, Sulfitobacter, and other bacterial OTUs within the intestinal bacterial community. Additionally, we observed enhanced complexity and stability in the intestinal bacterial correlation network, indicating improved synergy among bacteria and reduced competition. Moreover, the introduction of R. sphaeroides resulted in the down-regulation of certain immune genes and the up-regulation of genes linked to growth and metabolism in the intestinal tissues of P. vannamei. Importantly, we identified a noteworthy correlation between the changes in intestinal bacteria and these alterations in intestinal tissue gene expressions. By conducting analyses of the intestinal bacterial community and intestinal tissue transcriptome, this study revealed the effects of releasing R. sphaeroides as sediment probiotics in P. vannamei culture water. These results serve as vital scientific references for the application of R. sphaeroides in P. vannamei aquaculture.
Collapse
Affiliation(s)
- Zule Song
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kui Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Hernández-Cabanyero C, Carrascosa E, Jiménez S, Fouz B. Exploring the Effect of Functional Diets Containing Phytobiotic Compounds in Whiteleg Shrimp Health: Resistance to Acute Hepatopancreatic Necrotic Disease Caused by Vibrio parahaemolyticus. Animals (Basel) 2023; 13:ani13081354. [PMID: 37106917 PMCID: PMC10135097 DOI: 10.3390/ani13081354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Acute hepatopancreatic necrosis (AHPND) is an emerging severe disease caused by strains of Vibrio parahaemolyticus (VpAHPND) in whiteleg shrimp (Litopenaeus vannamei). Mitigating its negative impact, and at the same time minimizing antibiotics treatments, is the major challenge in shrimp aquaculture. A sustainable strategy could be to include immunostimulants in diet. Phytobiotics, harmless plant extracts with immunostimulatory and biocidal activities, are promising candidates. In this study, we evaluated the effectiveness of two diets (E and F) supplemented with phytobiotics (functional diets) in terms of protecting shrimp against AHPND. For this purpose, groups of animals were fed functional or control diets for 4 and 5 weeks and, subsequently, they were challenged with VpAHPND by immersion. We compared the mortality in infected groups and estimated the percentage of carriers by using a specific qPCR in hepatopancreas tissue. The results showed that mortality was significantly lower in the group fed functional diet E and, after a 5-week feeding schedule. This group also showed the lowest percentage of carriers. The pathological effects were also reduced with diet F. Thus, feeding shrimp with phytobiotic-enriched diets in critical periods will be highly beneficial because it increases the host's resistance to AHPND pathology.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Esther Carrascosa
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Silvia Jiménez
- IGUSOL ADVANCE, S.A. Pol. Ind. Lentiscares. C/La Losa, 7, 26370 Navarrete, La Rioja, Spain
| | - Belén Fouz
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Amiin MK, Lahay AF, Putriani RB, Reza M, Putri SME, Sumon MAA, Jamal MT, Santanumurti MB. The role of probiotics in vannamei shrimp aquaculture performance – A review. Vet World 2023; 16:638-649. [PMID: 37041844 PMCID: PMC10082739 DOI: 10.14202/vetworld.2023.638-649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/02/2023] [Indexed: 03/30/2023] Open
Abstract
Vannamei shrimp (Litopenaeus vannamei) is an important food commodity of economic benefit due to its high price, low susceptibility to disease, and popularity for consumption. These advantages have led many farmers to cultivate vannamei shrimp. Efforts are underway to improve the aquaculture performance of this species, including the use of probiotics, which are non-pathogenic bacteria that aid in digestion and help fight disease. Probiotics are usually obtained from the intestines of vannamei shrimp or the culture environment. They are low-cost, non-pathogenic, and largely non-toxic source of antibiotics and are able to synthesize various metabolites that have antibacterial functions and applications. Research on probiotic use has primarily been focused on increasing vannamei shrimp aquaculture production. Bacterial species, such as Lactobacillus or Nitrobacter, can be administered orally, by injection, or as a supplement in aquaculture water. Probiotics help to improve survival rate, water quality, immunity, and disease resistance through space competition with disease-causing bacteria, such as Vibrio spp. An increased number of probiotic bacteria suppresses the growth and presence of pathogenic bacteria, which lowers disease susceptibility. In addition, probiotic bacteria also aid digestion by breaking down complex compounds into simpler substances that the body can absorb more easily. This mechanism improves growth performance in terms of weight, length, and feed conversion ratio. This review aimed to provide information regarding contribution of probiotic to improve vannamei shrimp production in aquaculture.
Keywords: application, bacteria, farm, microbiome, shrimp.
Collapse
Affiliation(s)
- Muhammad Kholiqul Amiin
- Department of Marine Science, Faculty of Agriculture, Universitas Lampung, Bandar Lampung, Indonesia
| | - Almira Fardani Lahay
- Department of Marine Science, Faculty of Agriculture, Universitas Lampung, Bandar Lampung, Indonesia
| | - Rizha Bery Putriani
- Department of Aquatic Resources, Faculty of Agriculture, Universitas Lampung, Bandar Lampung, Indonesia
| | - Muhammad Reza
- Department of Aquatic Resources, Faculty of Agriculture, Universitas Lampung, Bandar Lampung, Indonesia
| | - Septi Malidda Eka Putri
- Department of Aquaculture, Faculty of Agriculture, Universitas Lampung, Bandar Lampung, Indonesia
| | - Md. Afsar Ahmed Sumon
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Muhammad Browijoyo Santanumurti
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya, Indonesia
- Corresponding author: Muhammad Browijoyo Santanumurti, e-mail: Co-authors: MKA: , AFL: , RBP: , MR: , SMEP: , MAAS: , MTJ:
| |
Collapse
|
6
|
Zhou N, Wang Z, Yang L, Zhou W, Qin Z, Zhang H. Size-dependent toxicological effects of polystyrene microplastics in the shrimp Litopenaeus vannamei using a histomorphology, microbiome, and metabolic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120635. [PMID: 36370970 DOI: 10.1016/j.envpol.2022.120635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Due to the wide application of plastic products in human life, microplastic pollution in water has recently attracted more attention. Many studies have revealed the size-dependent toxicity of microplastics. Here, we investigated the toxicological effects of polystyrene microplastics (PS-MPs) on the white leg shrimp, Litopenaeus vannamei, a profitable aquaculture species, using a comprehensive histomorphological, microbiome, and metabolomic approach to verify whether smaller particles are more toxic than larger particles. L. vannamei were experimentally exposed to water containing PS-MPs of four sizes (0.1, 1.0, 5.0, and 20.0 μm) for 24 h at 10 mg/L (acute experiment) and 12 d at 1 mg/L (subchronic experiment). After 24 h of acute exposure, PS-MP accumulation in shrimp indicated that the ingestion and egestion of PS-MPs had a size-dependent effect, and smaller particles were more bioavailable. The tissue morphological results of subchronic experiments showed that, for the guts and gills, the smaller sizes of the PS-MPs exhibited greater damage. In addition, 16 S rRNA gene amplicon sequencing showed that the alpha diversity was higher under larger PS-MP exposure. Correlated with changes in intestinal bacteria, we found a greater enrichment of metabolic pathways in hemolymph proteins and metabolites in larger PS-MP groups, such as "arginine and proline metabolism", "protein digestion and absorption", "lysine degradation". Interestingly, the activity or content of biomarkers of oxidative stress showed a peak at 1 μm and 5 μm. Under specific sizes of PS-MPs, the abundance of the pathogen Vibrio and probiotic bacteria Rhodobacter (5-μm) and Bacillus and Halomonas (1-μm) were simultaneously enriched. Our results indicated that PS-MP exposure can cause size-dependent damage to shrimp, yet specific particle size can be influential differently in regard to some research indicators. Therefore, it can enhance our comprehensive understanding of the impacts of microplastics on shrimp health and suggests that specific particle size should be considered when assessing the size-dependent toxicity of microplastics.
Collapse
Affiliation(s)
- Ningjia Zhou
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Zhiwei Wang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Lifeng Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Wenyao Zhou
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China.
| |
Collapse
|
7
|
Nababan YI, Yuhana M, Penataseputro T, Nasrullah H, Alimuddin A, Widanarni W. Dietary supplementation of Pseudoalteromonas piscicida 1UB and fructooligosaccharide enhance growth performance and protect the whiteleg shrimp (Litopenaeus vannamei) against WSSV and Vibrio harveyi coinfection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:746-756. [PMID: 36328328 DOI: 10.1016/j.fsi.2022.10.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
P. piscicida 1Ub and FOS were evaluated for their potential synbiotic effects on growth, immunological responses, and disease resistance against white spot syndrome virus and V. harveyi coinfection, the major pathogen in whiteleg shrimp aquaculture. Four different supplemented diets were used to feed the experimental shrimp for 40 days: control (control, no probiotic, and prebiotic), probiotic (PRO, P. piscisida 1UB 108 CFU mL-1), prebiotic (PRE, FOS 0.5% w/w), and the synbiotic (SYN, PRO + PRE). Shrimp's body weight, weight gain, specific growth rate, feed conversion ratio, survival, digestive enzyme activity, and metabolism-related gene expression were all evaluated on day 40. After 40 days, shrimp were infected with WSSV as the primary infection and V. harveyi as the secondary infection 24 h later. Shrimp were then grown for seven days and fed with a control diet. Survival, total hemocyte count (THC), differential hemocyte, phenol-oxidase (PO), respiratory burst activity (RB), and immune-gene expression were all analyzed at 0, 3, and 7 days after infection. The results showed that the PRO, PRE, and SYN supplementation improves whiteleg shrimp growth performance, immune responses, and protection against WSSV and V. harveyi coinfection. The increased activity of digestive enzymes and metabolism-related genes correlates with higher growth performance. The increase in THC, PO, RB, and immune-related gene expression after coinfection was associated with a significant reduction in shrimp mortality. Our findings also suggest that supplementing with synbiotics improves the overall performance of whiteleg shrimp significantly more than probiotics or prebiotics only.
Collapse
Affiliation(s)
- Yanti Inneke Nababan
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, West Java, 16680, Indonesia.
| | - Munti Yuhana
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, West Java, 16680, Indonesia.
| | - Tanjung Penataseputro
- National Research and Innovation Agency (BRIN) of the Republic of Indonesia, Jl. M.H Thamrin, Central Jakarta, 10340, Indonesia.
| | - Hasan Nasrullah
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, West Java, 16680, Indonesia.
| | - Alimuddin Alimuddin
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, West Java, 16680, Indonesia.
| | - Widanarni Widanarni
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, West Java, 16680, Indonesia.
| |
Collapse
|
8
|
Kewcharoen W, Srisapoome P. Potential synbiotic effects of a Bacillus mixture and chitosan on growth, immune responses and VP (AHPND) resistance in Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). FISH & SHELLFISH IMMUNOLOGY 2022; 127:715-729. [PMID: 35835382 DOI: 10.1016/j.fsi.2022.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The potential synbiotic effects of a Bacillus mixture and chitosan on growth, immune responses and disease resistance against Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND) in Pacific white shrimp, were intensively investigated. Three effective strains of Bacillus amyloliquefaciens (A), Bacillus pumilus (P) and Bacillus subtilis (S) were mixed in pairs at a ratio of 5 × 108:5 × 108 CFU/kg diet and coated with the prebiotic chitosan (C) at a concentration of 20 mL/kg diet. Five different feed treatments were used to feed experimental shrimp for 5 weeks: control (control, no synbiotics), chitosan (coat, C) and the synbiotic treatments PAC, PSC and ASC. At week 5, the final length, final weight gain, weight gain, length, average daily gain, specific growth rate and feed conversion ratio, measured as growth parameters, were significantly upregulated in the PSC and ASC groups compared with the control and coat groups (P < 0.05). This result was consistent with the expression analysis of two growth-related genes (Rap-2a and GF-II) in the hepatopancreas and intestines of treated shrimp, as determined using qRT-PCR. The prebiotic chitosan and synbiotics PAC, PSC and ASC strongly induced significant differences in the expression of the Rap-2a and GF-II genes in the target organs compared with the expression in the control group at various time points (P < 0.05). Additionally, application of the synbiotic treatments also significantly enhanced the hepatopancreas characteristics and epithelial and intestinal wall thicknesses of the shrimp compared with the control. Interestingly, all the synbiotic treatments elevated phagocytic activity significantly at weeks 3 and 5 compared with that in the other groups. qRT-PCR analysis of immune-related genes also indicated that the prebiotic group and all synbiotic groups showed strong expression of anti-lipopolysaccharide (ALF) and prophenoloxidase (proPO) genes in the intestine. Finally, the synbiotic groups PAC, PSC and ASC exhibited stronger VPAHPND resistance at 120 h after exposure than the chitosan coat and control groups, with survival rates of 41.7 ± 11.55, 41.7 ± 0.00, 52.8 ± 5.77, 30.6 ± 15.28 and 22.2 ± 5.77%, respectively (P < 0.05). Based on the obtained information, all synbiotics were recommended for improved growth and immune responses, while ASC was the best for disease resistance against VPAHPND in Pacific white shrimp.
Collapse
Affiliation(s)
- Werasan Kewcharoen
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
9
|
Huang Q, Zhu Y, Yu J, Fang L, Li Y, Wang M, Liu J, Yan P, Xia J, Liu G, Yang X, Zeng J, Guo L, Ruan G. Effects of sulfated β-glucan from Saccharomyces cerevisiae on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2022; 127:891-900. [PMID: 35810965 DOI: 10.1016/j.fsi.2022.06.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to examine the combined effects of sulfated β-Glucan from Saccharomyces cerevisiae (sGSC) on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii). Four experimental diets (sGSC25, sGSC50, sGSC100 and sGSC200) with different levels of sGSC (0.025%, 0.05%, 0.1% and 0.2% in diet, respectively) were fed to juvenile crayfish (average weight: 2.5 ± 0.5 g) for 8 weeks. The control diet was given with 2000 mg/kg GSC (GSC200 group). The based control diet was given without sGSC or GSC (blank group). Each group had 3 parallel test pools, 20 crayfish were reared in each pool. At the end of the growth trial, adding dietary 0.025%-0.1% sGSC could significantly improve the growth performance, antioxidant capacity and immunity of crayfish. Compared with GSC, sGSC had a better effect at lower concentration. Higher concentration of sGSC (>0.1%) would cause some side effects. sGSC also could improve the structure of the intestinal flora and optimize the function of the flora. sGSC would increase the abundances of probiotics such as Hafnia and Acinetobacter, and decreases the abundances of maleficent bacteria such as Enterobacteriaceae. Higher concentration of sGSC (>0.1%) would increase the abundance of Aeromonas. To conclude, 0.025%-0.1% sGSC can be used as a supplement in crayfish feed to increase growth, immunity, and antioxidant capacity and improve the structure of intestinal flora. These results provided a theoretical basis for the application of sGSC instead of GSC in crayfish breeding. It will be necessary to further study the optimal concentration of sGSC in feed additives in different growth stages of crayfish in the future.
Collapse
Affiliation(s)
- Qi Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yiling Zhu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jie Yu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Liu Fang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yana Li
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jiali Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Pupu Yan
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jinjin Xia
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Xiaolin Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Liwei Guo
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| | - Guoliang Ruan
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
10
|
Kongchum P, Chimtong S, Prapaiwong N. Association between single nucleotide polymorphisms of nLvALF1 and PEN2-1 genes and resistance to Vibrio parahaemolyticus in the Pacific white shrimp Litopenaeus vannamei. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Probiotics and Trained Immunity. Biomolecules 2021; 11:biom11101402. [PMID: 34680035 PMCID: PMC8533468 DOI: 10.3390/biom11101402] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
The characteristics of innate immunity have recently been investigated in depth in several research articles, and original findings suggest that innate immunity also has a memory capacity, which has been named “trained immunity”. This notion has revolutionized our knowledge of the innate immune response. Thus, stimulation of trained immunity represents a therapeutic alternative that is worth exploring. In this context, probiotics, live microorganisms which when administered in adequate amounts confer a health benefit on the host, represent attractive candidates for the stimulation of trained immunity; however, although numerous studies have documented the beneficial proprieties of these microorganisms, their mechanisms of action are not yet fully understood. In this review, we propose to explore the putative connection between probiotics and stimulation of trained immunity.
Collapse
|