1
|
Tavares CS, Wang X, Ghosh S, Mishra R, Bonning BC. Bacillus thuringiensis-derived pesticidal proteins toxic to the whitefly, Bemisia tabaci. J Invertebr Pathol 2025; 210:108291. [PMID: 39986348 DOI: 10.1016/j.jip.2025.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
The whitefly, Bemisia tabaci, is among the most important threats to global agriculture and food security. In addition to losses associated with feeding, B. tabaci vectors hundreds of plant viruses, many of which cause severe disease in staple food crops. The management of B. tabaci is confounded by extensive resistance to chemical insecticides. While pesticidal proteins derived from entomopathogenic bacteria such as Bacillus thuringiensis (Bt) could provide for alternative management approaches, only one pesticidal protein with toxicity to B. tabaci has been identified. Here we screened 11 Bt-derived pesticidal proteins from several different structural classes against the highly invasive, Middle East-Asian Minor 1 (MEAM1) cryptic species of B. tabaci, and assessed the impact of a B. tabaci-active protein on the gut epithelial membrane by transmission electron microscopy. The pesticidal proteins were expressed in Bt or in Escherichia coli and purified for use in bioassays. The toxicity of purified proteins was first assessed by feeding adults on a single dose followed by lethal concentration (LC50) determination for proteins with significant mortality relative to the buffer control. The proteins Tpp78Aa1, Tpp78Ba1, and Cry1Ca were toxic to B. tabaci with LC50 values of 99, 96, and 351 µg/mL, respectively. Disruption of the brush border and severe reduction in microvilli on the gut surface caused by Tpp78Aa1 is consistent with the mode of action of Bt-derived pesticidal proteins. These proteins may provide valuable tools for the integrated management of B. tabaci populations and associated reduced incidence of B. tabaci vectored plant viral diseases.
Collapse
Affiliation(s)
- Clebson S Tavares
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Saptarshi Ghosh
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Yang X, Mao Y, Chen L, Guan X, Wang Z, Huang T. Structural characteristics, biotechnological production and applications of exopolysaccharides from Bacillus sp.: A comprehensive review. Carbohydr Polym 2025; 355:123363. [PMID: 40037736 DOI: 10.1016/j.carbpol.2025.123363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
Exopolysaccharides (EPS) produced by Bacillus species display various biological activities and characteristics such as anti-oxidant, immunomodulatory, anti-bacterial, and bioadhesive effects. These attributes confer Bacillus species broad potential applications in diverse fields such as food, medicine, environment, and agriculture. Moreover, Bacillus-derived EPS are easier to produce and yield higher quantities than plant-derived polysaccharides. Despite these advantages, Bacillus-derived EPS still encounter numerous obstacles in industrial production and commercial applications, including elevated costs, the absence of mature fermentation tank production procedures, and the lack of systematic in vivo and in vitro activity and metabolic evaluation. Therefore, it is essential to gain insight into the current status of structure, production, and applications of Bacillus-derived EPS for facilitating their future broader application. This paper provides a comprehensive overview of the current research on the production, separation, characteristics and applications of these related biological products. Furthermore, this paper summarizes the current challenges impeding industrial production of Bacillus-derived EPS, along with potential solutions, and their prospective applications in enhancing the attributes of beneficial biofilms, laying a solid scientific foundation for the applications of Bacillus-derived EPS in industry and agriculture.
Collapse
Affiliation(s)
- Xiaolong Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yufei Mao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Lan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zixuan Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of biopesticides and Chemical Biology (Ministry of Education) & Biopesticide Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| |
Collapse
|
3
|
Hamrouni R, Regus F, Farnet Da Silva AM, Orsiere T, Boudenne JL, Laffont-Schwob I, Christen P, Dupuy N. Current status and future trends of microbial and nematode-based biopesticides for biocontrol of crop pathogens. Crit Rev Biotechnol 2025; 45:333-352. [PMID: 38987982 DOI: 10.1080/07388551.2024.2370370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/29/2023] [Accepted: 05/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing public demand to avoid the use of synthetic pesticides and fertilizers in agricultural production systems, causing serious environmental damages, has challenged industry to develop new and effective solutions to manage and control phytopathogens. Biopesticides, particularly microbial-based biopesticides, are a promising new alternative with high biodegradability, specificity, suitability for incorporation into integrated pest management practices, low likelihood of resistance development, and practically no known human health risks. However: expensive production methods, narrow action spectra, susceptibility to environmental conditions, short shelf life, poor storage stability, legislation registry constraints, and general lack of knowledge are slowing down their adoption. In addition to regulatory framework revisions and improved training initiatives, improved preservation methods, thoughtfully designed formulations, and field test validations are needed to offer new microbial- and nematode-based biopesticides with improved efficacy and increased shelf-life. During the last several years, substantial advancements in biopesticide production have been developed. The novelty part of this review written in 2023 is to summarize (i) mechanisms of action of beneficial microorganisms used to increase crop performance and (ii) successful formulation including commercial products for the biological control of phytopathogens based on microorganisms, nematode and/or metabolites.
Collapse
Affiliation(s)
- Rayhane Hamrouni
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille Univ, CNRS, LCE UMR 7376, 13331, Marseille, France
| | - Flor Regus
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille Univ, IRD, LPED, Marseille, France
| | | | - Thierry Orsiere
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | | | | | - Pierre Christen
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Nathalie Dupuy
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
4
|
Wang Y, Wang M, Zhang Y, Chen F, Sun M, Li S, Zhang J, Zhang F. Resistance to both aphids and nematodes in tobacco plants expressing a Bacillus thuringiensis crystal protein. PEST MANAGEMENT SCIENCE 2024; 80:3098-3106. [PMID: 38319036 DOI: 10.1002/ps.8013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) and its crystal toxin or δ-endotoxins (Cry) offer great potential for the efficient control of crop pests. A vast number of pests can potentially infect the same host plant, either simultaneously or sequentially. However, no effective Bt-Cry protein has been reported to control both aphids and plant parasitic nematodes due to its highly specific activity. RESULTS Our study indicated that the Cry5Ba2 protein was toxic to the green peach aphid Myzus persicae, which had a median lethal concentration (LC50) of 9.7 ng μL-1 and fiducial limits of 3.1-34.6 ng μL-1. Immunohistochemical localization of Cry5Ba2 revealed that it could bind to the apical tip of microvilli in midgut regions. Moreover, transgenic tobacco plants expressing Cry5Ba2 exhibited significant resistance to Myzus persicae, as evidenced by reduced insect survival and impaired fecundity, and also intoxicated the Meloidogyne incognita as indicated by a decrease in galls and progeny reproduction. CONCLUSION In sum, we identified a new aphicidal Bt toxin resource that could simultaneously control both aboveground and belowground pests, thus extending the application range of Bt-based strategy for crop protection. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
| | - MengNan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
| | - Yali Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
| | - Feng Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
| |
Collapse
|
5
|
Kishk A, Dos Santos Tavares C, Mishra R, Bonning BC, Killiny N. Influence of 'Candidatus Liberibacter asiaticus' infection on the susceptibility of Asian citrus psyllid, Diaphorina citri to Bacillus thuringiensis pesticidal proteins, Mpp51Aa1 and Cry1Ba1. J Invertebr Pathol 2023; 200:107972. [PMID: 37460056 DOI: 10.1016/j.jip.2023.107972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) transmits the Gram-negative bacterium 'Candidatus Liberibacter asiaticus' that causes citrus greening disease. While chemical control has been the main management strategy for limiting D. citri, the widespread usage of chemical sprays has decreased the susceptibility of D. citri to most insecticides. Pesticidal proteins produced by the bacterium Bacillus thuringiensis (Bt) are active against a wide variety of insects and provide a more sustainable approach to insect control. Herein, we investigated the impact of 'Ca. L. asiaticus' infection of D. citri on the toxicity of two Bt proteins (Mpp51Aa1 and Cry1Ba1). Proteins were delivered to healthy and 'Ca. L. asiaticus'-infected D. citri via topical feeding application. The LC50 values of Mpp51Aa1 and Cry1Ba1 were calculated for both nymphs and adults. Additionally, we evaluated the effect of each protein on the survival probability and life span of healthy and 'Ca. L. asiaticus'-infected D. citri. The LC50 values indicated that adults and nymphs were more susceptible to Mpp51Aa1 than to Cry1Ba1 in both healthy and 'Ca. L. asiaticus'-infected D. citri. 'Ca. L. asiaticus'-infected adults and nymphs were more susceptible to Mpp51Aa1 and Cry1Ba1 than healthy insects, and nymphs were more susceptible to Mpp51Aa1 and Cry1Ba1 than adults. Moreover, we found that Mpp51Aa1 had a greater impact than Cry1Ba1 on the survival and lifespan of adults, and 'Ca. L. asiaticus'-infected insects were more affected by these pesticidal proteins than healthy adults. These results have important implications for the use of pesticidal proteins in D. citri management in Florida and elsewhere given the widespread presence of 'Ca. L. asiaticus' in the D. citri population. In this era of eco-friendly control strategies, Bt-derived pesticidal proteins provide a promising avenue to reducing the application of chemical insecticides for D. citri management.
Collapse
Affiliation(s)
- Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, 33850, USA; Department of Plant Protection, Faculty of Agriculture, Tanta University, 31527, Egypt
| | | | - Ruchir Mishra
- Department of Entomology and Nematology, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
6
|
Xu X, Liu X, Li F, Hao C, Sun H, Yang S, Jiao Y, Lu X. Impact of Insect-Resistant Transgenic Maize 2A-7 on Diversity and Dynamics of Bacterial Communities in Rhizosphere Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:2046. [PMID: 37653965 PMCID: PMC10222967 DOI: 10.3390/plants12102046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 07/15/2023]
Abstract
Artificial modification of Bacillus thuringiensis (Bt) proteins can effectively improve their resistance to target pests, but the effect of such modification on the diversity of rhizosphere microorganisms remains unclear. Transgenic maize 2A-7 contains two artificially modified Bt proteins, mCry1Ab and mCry2Ab. These proteins can enter soil and pose a potential threat to soil microbial diversity. To assess their impacts on rhizosphere bacteria communities, the contents of the two Bt proteins and changes in bacterial community diversity in the rhizosphere soils of transgenic maize 2A-7 and its control variety were analyzed at different growth stages in 2020. The results showed that the two Bt proteins were detected at low levels in the rhizosphere soils of 2A-7 plants. No significant differences in soil bacterial diversity were detected between 2A-7 and its control variety at any of the growth stages. Bioinformatics analysis indicated that the growth stage, rather than the cultivar, was the main factor causing changes in bacterial communities. This research provides valuable data for understanding the impact of Bt crops on the soil microbiome, and establishes a theoretical basis for evaluation of their safety.
Collapse
Affiliation(s)
- Xiaohui Xu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xin Liu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Fan Li
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Chaofeng Hao
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongwei Sun
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shuke Yang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yue Jiao
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xingbo Lu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.X.); (X.L.); (F.L.); (C.H.); (H.S.); (S.Y.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| |
Collapse
|
7
|
Yang T, Wu Z, Li L, Jiang M, Fang X, Huang W, Zhou Y. Identification and analysis of toxins in novel Bacillus thuringiensis strain Bt S3076-1 against Spodoptera frugiperda and Helicoverpa armigera (Lep.: Noctuidae). Arch Microbiol 2023; 205:168. [PMID: 37017772 DOI: 10.1007/s00203-023-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
Despite the successful application of toxins from Bacillus thuringiensis as biological control agents against pests, pests are showing resistance against an increasing number of Bacillus thuringiensis toxins due to evolution; thus, new toxins with higher toxicity and broad-spectrum activity against insects are being increasingly identified. To find new toxins, whole genome sequencing of the novel B. thuringiensis strain Bt S3076-1 was performed, and ten predicted toxic genes were identified in this study, including six cry genes, two tpp genes, one cyt gene and one vip gene, among which six were novel toxins. Subsequently, SDS‒PAGE analysis showed that the major proteins at the spore maturation stage were approximately 120 kDa, 70 kDa, 67 kDa, 60 kDa and 40 kDa, while active proteins after trypsin digestion (approximately 70 kDa and 40 kDa) exhibited LC50 values of 149.64 μg/g and 441.47 μg/g against Spodoptera frugiperda and Helicoverpa armigera larvae, respectively. Furthermore, pathological observation results showed that the peritrophic membrane of Spodoptera frugiperda and Helicoverpa armigera larvae was degraded. These findings will provide an experimental reference for further research on the insecticidal activity, toxicity spectrum and synergism of these toxins in Bt S3076-1.
Collapse
Affiliation(s)
- Tianbao Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Zhongqi Wu
- Hainan Institute of Tropical Agricultural Resources, Sanya, 572025, Hainan, People's Republic of China
- Institute of Life Science, Jiyang College of Zhejiang A&F University, Zhuji, 311800, Zhejiang, People's Republic of China
| | - Liuping Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Xuanjun Fang
- Hainan Institute of Tropical Agricultural Resources, Sanya, 572025, Hainan, People's Republic of China
- Institute of Life Science, Jiyang College of Zhejiang A&F University, Zhuji, 311800, Zhejiang, People's Republic of China
| | - Wenshan Huang
- Guangxi Lvyounong Biological Technology Co., Ltd, Nanning, 537100, People's Republic of China
| | - Yan Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, 530008, People's Republic of China.
| |
Collapse
|
8
|
Tavares CS, Bonning BC. Mpp51Aa1 toxicity to Diaphorina citri nymphs demonstrated using a new, long-term bioassay method. J Invertebr Pathol 2022; 195:107845. [DOI: 10.1016/j.jip.2022.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
|
9
|
Bacteria-derived pesticidal proteins active against hemipteran pests. J Invertebr Pathol 2022; 195:107834. [DOI: 10.1016/j.jip.2022.107834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
|