1
|
De la Mora A, Goodwin PH, Morfin N, Petukhova T, Guzman-Novoa E. Diversity of Potential Resistance Mechanisms in Honey Bees ( Apis mellifera) Selected for Low Population Growth of the Parasitic Mite, Varroa destructor. INSECTS 2025; 16:385. [PMID: 40332899 PMCID: PMC12027846 DOI: 10.3390/insects16040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025]
Abstract
Honey bees (Apis mellifera) bred for resistance to the parasitic mite, Varroa destructor, were examined for potential Varroa resistance mechanisms following bidirectional selection for low (resistant) or high (susceptible) Varroa population growth (LVG and HVG, respectively) based on mite fall in colonies at two different time points. Hygienic and grooming behavior rates in LVG colonies were significantly higher than those in HVG colonies for two out of three generations of selection, indicating that behavioral resistance to the mite increased. For the third generation, grooming start time was significantly shorter, and grooming intensity more frequent in LVG bees than in HVG bees. Cellular immunity was increased as well, based on significantly higher haemocyte concentrations in non-parasitized and Varroa-parasitized LVG bees. Humoral immunity was increased with Varroa-parasitized LVG bees, which had significantly higher expression of the antimicrobial peptide gene, hymenoptaecin 2. In addition, antiviral resistance may be involved as there were significantly lower levels of deformed wing virus (DWV) in Varroa-parasitized LVG bees. While selection for LVG and HVG bees was solely based on Varroa population growth, it appears that behavioral, cellular, and humoral mechanisms were all selected along with this resistance. Thus, LVG resistance appears to be a multi-gene trait, involving multiple resistance mechanisms.
Collapse
Affiliation(s)
- Alvaro De la Mora
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (P.H.G.); (E.G.-N.)
| | - Nuria Morfin
- Department of Entomology, Faculty of Agricultural and Food Sciences, University of Manitoba, 12 Dafoe Road, Winnipeg, MB R3T 2N2, Canada;
| | - Tatiana Petukhova
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (P.H.G.); (E.G.-N.)
| |
Collapse
|
2
|
Morfin N, Goodwin PH, Guzman-Novoa E, Legge N, Longstaffe J. 1H NMR Profiling of Honey Bee Brains across Varying Ages and Seasons. INSECTS 2024; 15:578. [PMID: 39194783 DOI: 10.3390/insects15080578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Honey bees (Apis mellifera) provide a useful model for studying aging because of the differences in longevity between the relatively short-lived summer and long-lived winter bees, as well as bees lacking signs of cognitive senescence as they age. Bee brains were dissected from newly emerged, 14-day-, and 28-day- old bees in mid- and late summer, as well as brood nest bees in fall, winter, and spring, before, during, and after overwintering, respectively. Brains were examined with nuclear magnetic resonance (NMR) spectroscopy to analyze their metabolome. Nine variable importance in projection (VIP) variables were identified, primarily amino acids and choline derivatives. Differences in metabolite concentrations were found with different ages of summer bees, mostly between newly emerged and 14-day- old bees, such as a decrease in phenylalanine and an increase in β-alanine, but there were also changes in older adults, such as o-phosphocholine that declined in 28-day- old bees. Differences in brood nest bees were observed, including a decline in tryptophan and an increase in β-alanine. These may provide distinct metabolomic signatures with age and season. Such research holds promise for a better understanding of the complex interplays between bee physiology, development, and aging, which has implications for improving bee health and management.
Collapse
Affiliation(s)
- Nuria Morfin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- The British Columbia Technology Transfer Program, British Columbia Honey Producers' Association, P.O. Box 5594, Station B, Victoria, BC V8R 6S4, Canada
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicole Legge
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - James Longstaffe
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Cilia G, Tafi E, Zavatta L, Dettori A, Bortolotti L, Nanetti A. Seasonal trends of the ABPV, KBV, and IAPV complex in Italian managed honey bee (Apis mellifera L.) colonies. Arch Virol 2024; 169:43. [PMID: 38334819 DOI: 10.1007/s00705-024-05967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
Acute bee paralysis virus (ABPV), Kashmir bee virus (KBV), and Israeli acute paralysis virus (IAPV) usually persist as covert infections in honey bee colonies. They can cause rapid bee mortality in cases of severe infection, often associated with high Varroa destructor infestation, by which they are transmitted. In various countries, these viruses have been associated with colony collapse. Despite their potential danger, these viruses are often disregarded, and little information is available on their occurrence in many countries, including Italy. In 2021, 370 apiaries representing all of the Italian regions were investigated in four different months (June, September, November, and March) for the presence of ABPV, KBV, and IAPV. IAPV was not found in any of the apiaries investigated, whereas 16.45% and 0.67% of the samples tested positive for ABPV and KBV, respectively. Most ABPV cases occurred in late summer-autumn in both northern and southern regions. We observed a scattered pattern of KBV-positive colonies that did not allow any seasonal or regional trends to be discerned. Differences observed among regions and months were potentially related to the dynamics of varroa infestation, viral genetic variations, and different climatic conditions resulting in variations in bee behaviour. This study improves our understanding of the circulation of bee viruses and will contribute to better disease prevention and preservation of bee health.
Collapse
Affiliation(s)
- Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Elena Tafi
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy.
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Amanda Dettori
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
4
|
Morin ML, Giovenazzo P. Mite non-reproduction, recapping behavior, and hygienic behavior (freeze-kill method) linked to Varroa destructor infestation levels in selected Apis mellifera colonies. J Vet Diagn Invest 2023; 35:655-663. [PMID: 37139827 PMCID: PMC10621551 DOI: 10.1177/10406387231172141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The genetic selection of honey bees (Apis mellifera) possessing specific social hygienic behaviors offers the beekeeping industry the possibility of controlling the Varroa destructor parasite and thus reducing its dependence on acaricides. However, the links between these behavioral traits are not yet well defined, which limits genetic progress in breeding programs. We measured the following behavioral varroa resistance traits: freeze-kill brood (FKB) and pin-kill brood (PKB) assays, varroa-sensitive hygiene (VSH), pupae removal, mite non-reproduction (MNR), and recapping activity. We found 2 negative and significant relationships: 1) between the recapping of cells infested with varroa and the total number of recapped cells, and 2) between the recapping of cells infested with varroa and VSH. We also selected the best predictive model of varroa infestation levels using the "step-wise" approach based on the Akaike information criterion. Our model revealed that MNR and FKB were significantly related to the varroa population levels, with a negative relationship; recapping was significantly related to mite infestation levels, with a positive relationship. Thus, a higher MNR or FKB score was linked to lower levels of mite infestation in colonies on August 14 (prior to fall infestation treatments); a higher recapping activity was linked to a higher level of mite infestation. Recapping behavior could be a useful trait to aid the selection of varroa-resistant bee lineages.
Collapse
Affiliation(s)
- Marie-Lou Morin
- Département de biologie, Université Laval, Québec City, Québec, Canada
| | - Pierre Giovenazzo
- Département de biologie, Université Laval, Québec City, Québec, Canada
| |
Collapse
|